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ABSTRACT: We present a physically appealing and elegant 
picture for quantum computing, using rules constructed for a game 
of darts. A dartboard is used to represent the state space in 
quantum mechanics, and the act of throwing the dart is shown to 
have close similarities to the concept of measurement or collapse of 
the wave function in quantum mechanics. The analogy is 
constructed in arbitrary dimensional spaces, that is, using arbitrary 
dimensional dartboards, and for such arbitrary spaces this also 
provides us a “visual” description of uncertainty. Finally, 
connections between qubits and quantum computing algorithms 
are also made, opening the possibility to construct analogies between quantum algorithms and coupled dart throws. 

I. INTRODUCTION 

The promise of solving exponentially complex problems 
efficiently using quantum technologies1−3 and the development 
of the associated software is a rapidly evolving research frontier. 
While we are in the early stages of this emerging quantum 
revolution, there is already a diverse set of problems that can 
benefit from such developments. However, true progress can 
only be achieved by a rigorous study facilitated by the 
development of a competitive quantum workforce. As a result, 
research and workforce development in the strongly inter-
disciplinary area of quantum information sciences has been 
noted by the U.S. National Science Foundation (NSF) as one of 
the “Big Ideas” and recognized through the introduction of the 
National Quantum Initiative (NQI) from the White House. 
Furthermore, the 2019 National Academies Report entitled 
Quantum Computing: Progress and Prospects4 observes that 
“[a]dvances in QC theory and devices will require contributions 
from many fields beyond physics, including mathematics, 
computer science, materials science, chemistry, and multiple 
areas of engineering.” By contrast, regarding the present state of 
the quantum information science (QIS) workforce, the 
September 2018 National Science and Technology Council 
report5 notes that “America’s current educational system 
typically focuses on discrete disciplinary tracks, rarely emphasiz-
ing cross-disciplinary study that equips graduates for complex 
modern questions and challenges, prominently including QIS.” 
Emphasizing this point, Jeremy Hilton, Quantum Engineering 
Lead at Google AI, wrote in Forbes6 that “one issue has everyone 
united: There’s a shortage of quantum computing talent. This 
shortage has a significant impact on the future of the industry. A 

trained, well-rounded quantum workforce is the key to realizing 
the full practical value of quantum computing. And yet, pundits 
describe time and again the difficulty in recruiting talent. There 
isn’t a direct pipeline from universities, and there’s fierce 
competition for the limited workforce that is available...To 
continue expanding the quantum ecosystem, we need to grow 
the number of quantum-literate expertsnow.” 
Given these critical challenges, it is vital that we develop new 

paradigms for quantum education that are accessible at multiple 
levels of pedagogy. Strongly influenced by other similar 
initiatives,7−11 here we present an approach where we utilize a 
game of darts to discover the complexities of quantum 
mechanics and eventually quantum computing. The first author 
of this article is a high school senior who has deeply benefited 
from this interdisciplinary initiative. In fact, the goal of this effort 
can be labeled as “quantum computing without physics.” We 
make the case that it may be possible to introduce quantum 
theory without any background in physics at all. 
This work is organized as follows. We will begin by discussing 

Schrödinger’s cat problem along with a two-dimensional game 
of darts with rules constructed to reproduce the cat-state 
problem. Then, we will generalize this game of darts to multiple 
dimensions and eventually to a Fourier space, which yields one 
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visualization of uncertainty. Finally, we connect the game of 
darts to measurements performed on a set of qubit states and 
thus quantum computing and analyze a simple quantum circuit 
by constructing an analogy to a game of darts. 

II. FROM CATS TO DARTBOARDS: SETTING THE 
STAGE 

Schrödinger’s cat is a central thought experiment detailing the 
following scenario: a cat is trapped in a box with a lethal device 
for a certain duration of time. During this time, the device has 
some probability of activation. Then, by the end of a fixed 
duration of time, the box is opened, and the state of the cat (alive 
or dead) is observed. 
Schrödinger’s cat is as famous as it is because according to the 

principles of quantum mechanics, at the moment just before the 
box is opened, the cat is in a “super-position” state, that is, both 
dead and alive. And somehow, when the box is opened, the cat 
“collapses” to one of the two dead or alive states. Of course, this 
sounds extremely odd. Even Schrödinger thought so. Yet, if we 
consider this scenario as an analogy to the behavior of subatomic 
particles, this thought experiment accurately describes and 
presents the basis for much of contemporary nonrelativistic 
physics and also provides us with an algorithm to computation-
ally inspect almost all phenomena in chemistry, biochemistry, 
and material science. 
To rationalize this idea and to set the stage for more general 

prescriptions, we may begin with a two-dimensional space where 
one axis is labeled as “alive” and the other is labeled as “dead”. 
Any point in this 2D space represents the unobserved state of the 
cat prior to the box being opened. Thus, we may say 

= · + ·cat alive dead( ) ( ) (1) 

or formally 

| = | + |cat alive dead (2) 

This can be equivalently represented in a two-dimensional 
vector space as 

i 
k 
jjjj 

y
{ 
zzzz (3) 

assuming the first axis is the “alive” axis and the second is the 
“dead” axis. The only additional condition on choosing the 
specific point on the two-dimensional space is that the sum of 
the squares of the “alive” and “dead” components, that is, the 
length of the vector in eq 2, must equal 1. In the Coppenhagen 
interpretation of quantum mechanics, this implies that the 
probability that the cat is alive or dead is equal to 1. In other 
words, the probabilities of the cat being found “alive” or “dead” 
when the box is opened correspond to α2 and β2, respectively, 
and we have 

+ = 1 2 2 (4) 

II.A. A Dartboard for Our Cat. Imagine a game of darts for 
the above scenario. We will define the rules of the game as 
follows: 
Rule 1 The action of throwing the dart is designed to correspond 

to the action of opening the box in Schrödinger’s 
scenario. We thus require that the dart can only land 
directly on one of the axes that defines our space. While 
this requirement appears odd at this stage, we will see 
later that this corresponds to a normal game of darts 
when the number of dimensions grow. 

Rule 2 When the dart lands on a certain axis, the distance from 
the origin is noted. This distance, given eq 2, represents 
one measurement of the quantity α or β depending on 
the axis the dart lands on. Indeed, as per the discussion 
that follows eq 3, the probability that the dart lands on 
any given axis is proportional to the length α (or β). 

Rule 3 Given eq 4, the net probability of the dart landing on 
either axis is 1. 

Rule 4 Whether the dart lands on the horizontal or vertical axes 
is determined by the magnitude of α and β. The greater a 
particular value is, the more likely that the dart lands on 
that specific axis. More specifically, these likelihoods are 
α2 and β2 as noted above. 

Without loss of generality, our axes were chosen as the 
horizontal and vertical axes, and we labeled these as “dead” 
and “alive”. This is consistent with the original thought 
experiment, where, when we observe the cat, it must be either 
dead or alive. Thus, our dart throw must also provide us with one 
of the two results. 
Furthermore, the result of a single throw of the dart is 

completely random and can result in a dead state or an alive state 
with probabilities α2 and β2. Thus, with a single dart throw, we 
do not know much about the state of the cat prior to the throw. 
However, with multiple such dart throws, the ratio of the 
number of darts landing on the “alive” axis to the number of 
darts landing on the “dead” axis would approach the ratio of the 
probabilities, namely, α2/β2. 
II.B. Game of Darts in N-Dimensions May Be 

Interpreted as a Monte Carlo Problem. We may express a 
function by enumerating its values at every single point on the 
number-line as 

i 

k

jjjjjjjjjjjjjjjjj 

y 

{ 

zzzzzzzzzzzzzzzzz 

y

y

yn 

1 

2

(5) 

where the value yi represents the function’s value at xi. This 
infinitely long vector is not dissimilar from that in eq 3. 
The rules for the dartboard game in Section II.A when applied 

to this vector space lead to an appealing interpretation. In our 
game of darts discussed above, each value along the vector in eq 
3 corresponds to one specific component that dictates the 
probability that the dart lands on a given axis. The same set of 
rules when applied to eq 5 yields a game of darts with n 
orthogonal dimensions where the probability of the dart landing 
on an axis labeled as xi, is given by yi. However, since eq 5 also 
represents some function, we can re-express this multidimen-
sional game of darts as being played on a two-dimensional 
coordinate system (see Figure 1), where every throw of the dart 
can land anywhere along the horizontal axis, with the probability 
of a given throw landing on a specific point along the horizontal 
axis being given by the square of the vertical axis value at that 
point as shown in Figure 1! This leads us to a natural 
interpretation that appears similar to a Monte Carlo problem. 

III. FUNCTIONS IN FOURIER SPACE LEAD TO 
COMPLEMENTARY FOURIER DARTBOARDS 

Now, consider two real functions: cos(kx) and sin(mx), such 
that k and m are integers. Since we’ve established above that we 
can treat these functions as vectors, as in eq 5, that is 
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i 
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jjjjjjjjjjjjjjjjjjj 

y 

{ 

zzzzzzzzzzzzzzzzzzz 

kx 

kx 

kx 

kx 

cos( ) 

cos( ) 

cos( )

cos( )n

1

2

(6) 

and similarly 

i 

k 

jjjjjjjjjjjjjjjjjjj 

y 

{ 

zzzzzzzzzzzzzzzzzzz 

mx 

mx 

mx 

mx 

sin( ) 

sin( ) 

sin( )

sin( )n

1

2

(7) 

we can then express the dot product of these vectors as a sum of 
products; that is 

x kx mxd cos( )sin( ) 
(8) 

which is identically zero. Thus, we may say that the sine and 
cosine functions are essentially vectors that are orthogonal to 
each other. A similar statement can be made for any two Cosine 
or any two Sine functions as well, that is 

=x kx mxd cos( )cos( ) k m, (9) 

and 

=x kx mxd sin( )sin( ) k m, (10) 

where δk,m is the Kroneckar delta function. As a result, we may 
use a family of Sine and Cosine functions, with different values 
for k and m in eqs 6 and 7, to create an n-dimensional vector 
space where each axis is labeled using eq 6 or 7. For example, 
cos(x) and cos(2x) define a 2D vector space. If we add a third 
function, such as cos(3x), we have a three-dimensional space 
since cos(3x) is orthogonal to both cos(x) and cos(2x) and so 
on. With n such functions, we have now created an n-
dimensional space, and as we let n → ∞, we have an infinite-
dimensional vector space. Thus, in a manner that is 
complementary to eq 5, we may express any function as a linear 
combination of the vectors that make up our new infinite 
dimensional basis, which are the sinusoidal functions in the form 
cos(kx) and sin(kx), where k : 

= [ + ] 
=

f x A k x B k x( ) cos( ) sin( )
i 

i i i i 
0 (11) 

or to present this in a fashion complementary to eq 5: 

i 

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 

y 

{ 

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 

A

A

A

B

B

B 

n

n

0 

1 

0 

1 

(12) 

which exemplifies the many findings we just made. The 
coefficients {An; Bn} are evaluated by using the “dot” product: 

=A x f x mxd ( )cos( )m (13) 

As f(x) is made up of a certain amount of each wave, and we have 
shown that these waves are independent of one another (their 
dot product is 0), taking the dot product of f(x) and one wave 
component, cos(nx) or sin(nx), will yield a numerical value 
corresponding to the amount of that wave in f(x). 
III.A. A Complementary N-Dimensional Dartboard in 

Fourier Space. The rules for our game of darts discussed in 
Section II.A when applied to eq 5 led to a Monte Carlo 
interpretation in Section II.B. But we may apply the same rules 
to eq 12 as represented by Figure 2. Based on “Rule 4” above, 

this leads to the interpretation that the probability of the dart 
landing on any given axis of our new basis space (or any given 
point in the horizontal axis of Figure 2) is dictated by the extent 
to which a specific frequency captured by the sine or cosine wave 
is present in the function. Thus, rather than having just two axes 
(the “dead” and “alive” axes from the first example), in Section 
II.B and here, we now have an infinite number of orthogonal 
axes. Each axis is labeled here by a wavespecifically, its 
frequency. A point in this space, like in the first example, is 
simply a linear combination of these axes. From the discussion of 
Fourier components, we know that every function can be 
uniquely represented in this space. 
For example, given the function 

= + +f x a x b x c x( ) cos( ) cos(2 ) sin(5 ) (14) 

the probability of our dart throw landing along the cos(x) axis, or 
at a point with ki = 1 in Figure 2, would be 

+ +
a

a b c 

2 

2 2 2 . Similarly, 
the probability of our dart throw landing along the cos(x) axis, or 
at a point with ki = 2 in Figure 2, would be 

+ + 
b

a b c 

2

2 2 2 , and so on. 

Figure 1. An alternative image of the dartboard problem for eq 5. The 
probability of a dart landing at xi is proportional to yi. 

Figure 2. Dartboard problem for eq 12. The probability of a dart 
landing at ki is proportional to Ai. A similar figure may be constructed 
for the Sine functions. 
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Notice how in the cat scenario the calculation of the 
probabilities for landing on a specific axis is the same as the 
calculation above. The “alive” probability would be 

+ 

2 

2 2 , and 

the “dead” probability would be 
+ 

2 

2 2 . However, due to the 

normalization condition, where α2 + β2 = 1, this simplifies to α2 
and β2 , respectively. 

IV. THE UNCERTAINTY DILEMMA BETWEEN THESE 
COMPLEMENTARY DARTBOARDS 

Let us go back to Figure 1 and imagine that our function f(x), 
represented by eq 5, is an exact Cosine wave, say cos(x). In such 
a situation, eq 12 would have exactly one value, A1 = 1, and all 
other values in eq 12 would be identically zero. Consequently, 
while Figure 1 would display a wave with a single frequency, 
where the dart may land anywhere along the horizontal axis, the 
complementary form of Figure 2 would yield a single peak at k1 = 
1, zero everywhere else, thus yielding a probability of “1” that the 
dart lands at one precise point. Thus, while the outcome of every 
throw of a dart is precisely dictated, with certainty in Figure 2, the 
corresponding outcome of a single throw of darts may land anywhere 
along the horizontal axis in Figure 1 and hence is uncertain! 
Of course the description above is general and does not really 

only apply to quantum mechanics. But if we were equipped with 
de Broglie’s wave−particle duality, where the momentum of a 
particle is dictated by the frequency associated with its wave-
nature, it is clear from the above discussion that the function 
cos(x) has a precisely defined momentum. However, given that 
the game of darts in Figure 1 may land anywhere along the 
horizontal axis, the corresponding position is infinitely 
uncertain! Thus, one may say that using the game of darts, we 
have picturized in Figure 2 a momentum space, and in Figure 1, a 
complementary position space. But our development above did 
not need the principles of quantum mechanics and is hence 
expected to be more general. Indeed, it is well-known that a 
similar time−frequency uncertainty exists in signal processing.12 

V. SCHRÖ DINGER’S CAT AS A QUBIT, DARTS AS 
MEASUREMENTS 

Now, let us move on to the connection to the quantum bits. 
Quantum bits, also known as qubits, are similar to the 
Schrödinger’s cat dartboard example that we began with earlier. 
This time, instead of our two states being “dead” and “alive”, we 
label the states as |0⟩ and |1⟩, which are again defined to be 
orthogonal to each other as before. If we define |0⟩ along the 
horizontal axis and |1⟩ along the vertical axis, then our qubit is 
similar to our cat-state from Section II. We can express it in an 
analogous fashion as in eq 2, and 

| = | + |0 1 (15) 

where |ψ⟩ represents a qubit state with components α and β 
which dictate the probabilities of “collapsing” the state to the |0⟩ 
and |1⟩ directions, respectively, exactly as in the game of darts. 
Note how qubits differ from standard bits. Standard bits can 

only be 0 or 1. Qubits, on the other hand, can exist in a 
superposition, as in eq 15. However, when measured, equivalent 
to our earlier dart throws, these qubits collapse to a |0⟩ or |1⟩ 
state. 
Now consider two qubits. Since these can both independently 

reside on their respective |0⟩ and |1⟩ states, the two-qubit system 
is a four-dimensional space with axes labeled as |00⟩, |01⟩, |10⟩, 
and |11⟩. How would we be able to express this pair of qubits? 

The key is in recognizing that these four states are similar to (a) 
the |0⟩ and |1⟩ states for a single qubit, (b) the basis states for the 
function in eq 5, and (c) the states in eqs 11 and 12, that is, the 
states |00⟩, |01⟩, |10⟩, and |11⟩ are orthogonal. Four orthogonal 
states implies a four-dimensional space, and a state 

| = | + | + | + |q q q q q00 01 10 11 00 01 10 11 (16) 

is a point in this four dimensional space. Again, all of our 
discussion on the dartboards applies to this state. The square of 
the coefficients, as usual, corresponds to the probability of the 
pair of qubits collapsing to one specific dimension in this four-
dimensional space. But, upon adding an extra qubit, we have an 
expanded game of darts. If we were to add a third then we have 
eight different possible basis states and in general we have 2N 

orthogonal dimensions for N-qubits. In this fashion, the 
complexity and the ability to store (and process) information 
grows exponentially from a family of qubits. 
We may also construct an analogy between eq 16 and the state 

corresponding to two cats that may be independently “dead” or 
“alive”. Thus 

| = | + | 

+ | + | 

cats q alive alive q alive dead 

q dead alive q dead dead 

2 alive alive alive dead 

dead alive dead dead 

1 2 1 2 

1 2 1 2 

1 2 1 2 

1 2 1 2 

(17) 

where for example the probability of recovering both cats as 
living is proportional to |qalive d1alived2

|2. 

VI. BELL STATES USING “ENTANGLED” DARTS 
We now introduce a sophisticated concept in quantum 
information known as entanglement, which is used in the 
context of quantum teleportation. We developed a dartboard 
analogue to this concept. For this we first introduce a Bell state2 

which is created from a subset of the four vectors in eq 16, 
namely 

| = [| + | ]q
1 
2 

00 11 B (18) 

Thus, by comparison with eq 17, when cat-1 is recovered to be 
alive, this is also the case for cat-2 and vice versa. Thus, in some 
sense, the outcomes of the throw of darts corresponding to the 
two cats have not become “entangled”. That is, the outcome 
from the first dart throw also dictates and influences the second 
dart. A quantum circuit that creates such a state is shown in 
Figure 3. How does one create a picture of this using our 
dartboard analogy? 
Let us imagine two darts that, as we will discover, behave in a 

very peculiar fashion. The two wires in Figure 3 represent the 

Figure 3. A quantum circuit to create the Bell state in eq 18. An initial 
state, |0⟩ ⊗ |0⟩, is propagated through a Hadamard transform of qubit 

one to yield { }[| + | ] |0 1 0 1
2 

. Following this, application of a 

CNOT gate yields the state shown in eq 18. 
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two different dartboards where these darts are supposed to land. 
We will also assume, as done in eq 17, that there exist two cats 
whose lives are influenced by the outcome from these two darts 
and their respective boards. Dartboard-1, the top wire in Figure 
3, is preprocessed through a transformation given by the 
Hadamard transform H in Figure 3. This Hadamard transform 
simply rotates the state that dictates the dart landing 
probabilities for Dartboard-1 by 45°. So our Dartboard-1 will 
now present dart-1 with equal probabilities of landing along the 
horizontal and vertical axis. Thus, in a sense, going back to our 
cat states in eq 2, the Hadamard transform has created a state 
that looks like [| ± | ] alive dead 1

2 
and notice then by 

comparison with eq 2, that both α2 and β2 are equal. Thus, 
after the Hadamard transform, Dart-1 is free to land on either 
axis, with no bias. 
Let us now presume that Dart-2 begins with a dartboard 

where the dart throws are dictated by the probability, using the 
cat-state analogy, α = 0 and β = 1. Thus, we know with certainty 
that the state that dictates Dart-2 is, for example, the |0⟩ state, or 
the cat represented here is, for example, |alive⟩ with probability 1. 
Thus, without influence from Dart-1, Dart-2 will always provide 
an outcome where the cat is “alive”. 
Now something very strange happens as a result of the 

operation 

in Figure 3. The two darts are not independent anymore. When 
Dart-1 lands on the state |0⟩, that is, finds that the corresponding 
cat is “alive”, Dart-2, dictated by the probabilities that control 
Dartboard-2 discussed in the previous paragraph, recovers an 
|alive⟩ or |0⟩ too. However, when Dart-1 lands on the state |1⟩, 
that is, finds that the corresponding cat is “dead”, Dart-2 
promptly f lips the probabilities in the state that dictates 
Dartboard-2 and also recovers a |dead⟩ or |1⟩ state. Thus, the 
behavior of Dart-2 is not independent from that of Dart-1, and 
this property is called entanglement. This bizarre result is one of 
the major hallmarks of quantum mechanics and is thought to be 
central to a presumed advantage that a computer created from 
the principles of quantum mechanics may have over those that 
we currently use. We have attempted to reproduce this rather 
bizarre result in our table-of-contents image on the first page of 
this paper. At the center of this TOC image is the image from 
Figure 3. On the left side is an illustration of a four-dimensional 
object known as a tesseract. The two dartboards represent the 
two qubits and are shown along orthogonal dimensions of the 
tesseract. On the right side of the quantum circuit, we show two 
“entangled” darts that control each other and perform the role of 
the measurement discussed above. This is a visual representation 
of the entanglement process within our dartboard game 
formulated here. 

VII. CONCLUSION 

We develop an approach to discuss the fundamental under-
pinnings of quantum mechanics and quantum computing using 
the concept of dart throws onto the two axes of two-dimensional 
space. The concept of qubits and measurement is related to 
these dart throws, and the process, when generalized, yields 
visual descriptions of uncertainty and Fourier transforms. We 
follow the prescriptions of this game and develop a way to relate 

these concepts to fundamental notions in quantum information 
storage and processing, including analogues to quantum circuits 
and Bell states. 
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