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ABSTRACT: We present a multitopology molecular fragmenta-
tion approach, based on graph theory, to calculate multidimen-
sional potential energy surfaces in agreement with post-Hartree− 
Fock levels of theory but at the density functional theory cost. A 
molecular assembly is coarse-grained into a set of graph-theoretic 
nodes that are then connected with edges to represent a collection 
of locally interacting subsystems up to an arbitrary order. Each of 
the subsystems is treated at two levels of electronic structure 
theory, the result being used to construct many-body expansions 
that are embedded within an ONIOM scheme. These expansions 
converge rapidly with the many-body order (or graphical rank) of 
subsystems and capture many-body interactions accurately and 
efficiently. However, multiple graphs, and hence multiple 
fragmentation topologies, may be defined in molecular configuration space that may arise during conformational sampling or 
from reactive, bond breaking and bond formation, events. Obtaining the resultant potential surfaces is an exponential scaling 
proposition, given the number of electronic structure computations needed. We utilize a family of graph-theoretic representations 
within a variational scheme to obtain multidimensional potential surfaces at a reduced cost. The fast convergence of the graph-
theoretic expansion with increasing order of many-body interactions alleviates the exponential scaling cost for computing potential 
surfaces, with the need to only use molecular fragments that contain a fewer number of quantum nuclear degrees of freedom 
compared to the full system. This is because the dimensionality of the conformational space sampled by the fragment subsystems is 
much smaller than the full molecular configurational space. Additionally, we also introduce a multidimensional clustering algorithm, 
based on physically defined criteria, to reduce the number of energy calculations by orders of magnitude. The molecular systems 
benchmarked include coupled proton motion in protonated water wires. The potential energy surfaces and multidimensional nuclear 
eigenstates obtained are shown to be in very good agreement with those from explicit post-Hartree−Fock calculations that become 
prohibitive as the number of quantum nuclear dimensions grows. The developments here provide a rigorous and efficient alternative 
to this important chemical physics problem. 

1. INTRODUCTION 
The accurate and efficient study of the electronic structure, 
including electron correlation, and nuclear dynamics is at the 
core of multiple problems that are critical to materials,1−3 

biological,4−13 and atmospheric research.14−17 However, these 
studies are deeply affected by the steep, polynomial scaling 
cost of the electronic structure18−22 and potential exponential 
scaling of quantum nuclear dynamics.23−27 The latter is 
further complicated by the need for accurate potential 
surfaces on a dimensionally dependent set of the ever-
growing number of nuclear geometries.28−33 With regard to 
the electronic structure, molecular fragmentation34−65 and 
related studies on many-body theory36,66−86 have recently 
become an important alternative to traditional studies on 
electron correlation. The critical goal of these fragmentation 
methods is to bridge the gap between the quality of the 
electronic structure and basis sets achievable for small 
molecular clusters and those used routinely for larger 

molecular assemblies. The conventional quality methods 
have shown a remarkable chemical predictive insight 87−89 

scale in a steeply algebraic fashion as the system size 
grows.18,21,90−92 Due to these inherent costs, most ab initio 
molecular dynamics (AIMD) trajectory studies are limited to 
on-the-fly density functional theory (DFT) calculations with a 
modest basis, but their use is restricted in many ways. 93−95 

Molecular fragmentation-based methods have been noted to 
remedy the intractability of correlation and extended basis set 
effects especially for AIMD studies96−106 and for molecular 
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potential surfaces.107,108 Several biological109−112 studies have 
also been made possible from the state-of-the-art molecular 
fragmentation methods. 
In a series of publications,99,102−104,106,107,113−115 we have 

shown how graph-theoretic methods may be used to 
adaptively construct many-body approximations within 
ONIOM 39,116−120 to obtain accurate post-Hartree−Fock 
potential surfaces107,114 and AIMD trajectories99,102−104,106,113 

at a reduced computational cost. Beginning from an 
ONIOM-type decomposition of the system, the individual 
extrapolatory components within ONIOM (the so-called 
“model” and “real” components of the calculation) are 
obtained using many-body theory,36,66−86 which is written in 
a general and adaptive fashion using graph theory. The idea 
of using a graph-theoretic description to construct many-body 
approximations allows the use of multiple powerful 
libraries121,122 in Python, which are extremely well refined 
and robust and allow for implementation of a completely 
general partitioning or molecular fragmentation scheme. As a 
result, the many-body decomposition used here, within 
ONIOM, and in refs 103, 104, 106, 107, 114, and 115 is 
adaptive and system-independent. Although our formalism in 
refs 99, 102−104, 106, 107, and 113−115 is derived from 
ONIOM,39,116−120 it also has close connections to other 
fragmentation and many-body methods including the multi-
centered QM/QM formalism,35,36 the molecular tailoring 
approach,37,38 the ONIOM-XO method,39 the hybrid many-
body interaction (HMBI) model,44,123 the molecules-in-
molecules (MIM) methodology,40−43 and the incremental 
method,44−48 to name just a few. Indeed, there are several 
other fragmentation methods49−65 available, but the ap-
proaches in refs 35, 38−42, 99, 102, 103, and 113 include 
long-range electronic effects through a full-system low-level 
calculation, much in the same vein as the ONIOM 39,116−120 

method. 
The use of accurate analytical gradients associated with the 

energy expression in refs 99, 102−104, 106, 107, and 113− 
115 yields both extended Lagrangian-102,113 and Born-
Oppenheimer99,102,113-based AIMD simulations that can be 
performed at accuracy comparable to CCSD and MP2 levels 
of theory with DFT-computational expense. We have also 
shown that weak interactions (specifically hydrogen bonds) 
can be accurately captured and efficient approximations to 
large-basis AIMD trajectories can be constructed through 
computational effort commensurate with much smaller basis 
set sizes. For example, in ref 104, AIMD trajectories are 
constructed in agreement with basis sets such as 6-311+ 
+G(2df,2pd) with computational effort commensurate with 
those from smaller basis sets such as 6-31+G(d), for 
polypeptide systems with 100+ atoms. This is carried out 
using both extended Lagrangian and Born-Oppenheimer 
techniques. Furthermore, we have also shown in ref 115 
that using this graph-theoretic technique, condensed-phase 
simulations on surfaces and bulk systems may be constructed 
at hybrid DFT (Rung-4 functionals) accuracy using gradient-
corrected DFT (Rung-2 functionals) effort. This has been 
shown for both atom-centered and plane-wave basis sets. 
Furthermore, as seen in ref 115, this methodology allows one 
to supplement plane-wave-based DFT calculations, with local, 
heterogeneous, electronic effects, as these may arise from 
substrate adsorption, using atom-centered basis functions. In 
this paper, we generalize our formalism for graph-theoretic 
interpolation of potential energy surfaces to allow a 

completely automated procedure that works efficiently for 
arbitrary dimensional problems. The main features of the 
method discussed here are as follows: as noted in ref 107, the 
graphical decomposition is not unique when a family of 
molecular configurations are considered as needed during a 
potential surface calculation. For example, when excess 
protons or acidic groups are locally present, as they might 
be in water clusters and in solvated/hydrogen-bonded amino 
acid groups, proton transfer changes the nature of the coarse-
grained graphical units (or nodes in the graph) and also 
changes the graphical connectivity. Similarly, large-scale 
rearrangement of molecular frameworks, including rearrange-
ment of solvation shells and general conformational 
dynamics, also allows for a change in the graph-theoretic 
adjacency description. In all such cases, multiple graphical 
structures must be considered simultaneously. In this regard, 
the key idea in ref 107 is to interpret the potential surfaces 
obtained from each of the graphs as individual diabatic 
states124−134 and obtain the overall potential surface through 
a linear combination of such diabatic states, constructed using 
a variational procedure, as is carried out within many valence 
bond-based methods.127,135−147 This was shown to work very 
well in ref 107 for a few degrees of freedom. In Section 2, we  
generalize this procedure to multiple dimensions. 
The paper is organized as follows: in Section 2, we  first 

present a brief survey of our graph-theoretic approach for the 
low-cost electronic structure, AIMD, and potential surface 
calculations, followed by the generalization of the same to 
obtain multidimensional potential surfaces obtained from 
combining multiple graphical representations, or multiple 
fragmentational depictions, of a given molecular assembly. 
Computational aspects of the graph-theoretic approach are 
discussed in Section 3 with more details provided in the 
Supporting Information. The study of potential energy 
surfaces in a protonated water-wire system is provided in 
Section 4. Additionally, Appendices A through D comple-
ment the discussion in Sections 2 through 4. Conclusions are 
given in Section 5. 

2. MULTITOPOLOGY MOLECULAR FRAGMENTATION 
PROCEDURE FOR EFFICIENT AND ACCURATE 
POTENTIAL SURFACE EVALUATIONS 

The basic idea behind the approach in refs 99, 102−104, 106, 
107, and 113−115 is as follows: A molecular assembly is first 
divided into a set of “nodes” or “vertices”. In refs 99, 102− 
104, 106, 107, and 113−115, as part of the study on 
protonated water clusters and polypeptide fragments and the 
study of adsorption of organic impurities on the surface of 
water, these “coarse-grained” units are considered to be 
single-amino-acid groups within a polypeptide sequence, 
adsorbed organic molecules such as methanol and methane 
molecules on the surface water that is treated using periodic 
boundary conditions, water molecules, or their protonated 
form. However, the implementation is general enough to 
include other nodal definitions. Following this, based on a 
chosen two-body interaction envelope, edges are defined, 
leading to a map between a specific molecular geometry 
defined by the nuclear coordinates, R, and a graph, ., that is 
defined using the set  of vertices  and edges, that is,  

V V; 0 1. ≡ { }. Here, V0 is the set of vertices or coarse-
grained partitions in the molecular assembly and V1 is the set 
of edges that capture interactions between these vertices or 
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molecular fragments. However, once such a graph is defined, 
higher rank objects up to a maximum rank 9 are also 
specified by the graph, as given by 

rV V V V V V0, ..., , , , ..., , ...,r r0 1 2 9 9{ | =  } ≡ { } (1) 

The quantity Vr represents the set of all rank-r entities in 
the graph that may be used to capture the interactions 
between (r + 1) nodes or monomers as we carry out below 
in eqs 2 and 3. We further include within Vr only those rank-
r entities that are fully connected. Thus, a triangle is included 
in V2 only if all nodes inside the triangle are already 
connected by edges and are included in V1. Similarly, a 
specific rank-3 object (a tetrahedron) is included in V3, only 
if all triangles, or trimers, within the rank-4 object are also 
included within V2. Such rank-r objects, where all pairs of 
nodes are completely connected, are called simplexes. 148−152 

This geometrical consideration is critical in our approach, as 
we will see, and leads to a significant connection to many-
body expansions in the next paragraph. 
One such example of a graphical representation of a 

molecular system is depicted in Figure 1 where an amino acid 

chain containing 12 alanine units is coarse-grained into a 
molecular graph. For the molecular graph thus-obtained, two 
of the simplexes148−152 in V3 are highlighted in the lower 
panel of Figure 1 as orange shaded regions. The fact that 
these simplexes are well-separated, that is, the orange 
simplexes do not spatially overlap, has a critical role in the 
efficiency of the algorithm presented in this paper. 
Once a system is graphically partitioned as described 

above, many-body expansions are introduced to obtain 
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where “level, I” represents the level of electronic structure 
theory used to construct this expansion, pα

r,m is the number of 
times the αth (r + 1)-body term (in set Vr) appears in all (m 
+ 1)-body terms (in set Vm) for m ≥ r, and, consequently, 

r ,49
α is the number of times the αth (r + 1)-body term 

appears in all objects of rank greater than or equal to r, until 
the maximum rank, 9. Thus, eq 2 is essentially the standard 
many-body expansion36,66−86 written and implemented using 
graph-theoretic methods. This fact is explicitly shown in ref 
115 and also here in Appendix A. A set of two such many-
body approximations, constructed at two different levels of 
theory labeled “level, 1” and “level, 0”, are then combined 
using an ONIOM scheme to obtain 
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where 

E E ER R( )  ( )r r r,
1,0 

,
level,1 

,
level,0 Δ ≡ −α α α (4) 

Furthermore 
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is the correction term added to Elevel,0, in  eq 3, that includes 
the additional many-body contributions that arise from “level, 
1” treatment, as compared to “level, 0” treatment. As is 
standard in ONIOM, the first term on the right side of eq 3, 
Elevel,0 , represents the lower-level approximation to the full 
system, which is then improved upon through the difference 
E E( )MBE,

level,1 
MBE, 
level,09 9− . Additionally, the R dependence of α on 

the third and fourth lines on eq 3 is dropped for the purpose 
of clarity. In refs 99, 102−104, 106, 107, and 113−115, eq 3 
is implemented using two levels of theory such as DFT (for 
level, 0) and post-Hartree−Fock methods (MP2 and CCSD 
for level, 1) or similarly low- and high-level Gaussian basis 
sets in ref 104 to obtain accurate and efficient AIMD 
trajectories. In refs 106 and 115, we have demonstrated the 
rapidly convergent nature of eq 3 and contrast this behavior 
with standard many-body theory as derived from the direct 
application of eq 2. Furthermore, in refs 106 and 115, we  
have also shown that eq 3 is numerically convergent at order 

2 9 = or less (three-body terms) for water clusters, aqueous 
organic-solute/solvent interfaces, and bulk water systems. 
(See Appendix B.) Thus, through refs 99, 102−104, and 
113−115, we have established an automated approach, that 
has connections to ONIOM, molecular fragmentation, and 
many-body theory, to carry out (a) post-Hartree−Fock 
AIMD at the DFT cost,99,102,113 (b) large basis set AIMD 
at low basis costs,104 (c) condensed-phase studies with Rung-
4 (hybrid) functional accuracy but at a Rung-2 (pure) 
functional computational cost,115 and (d) plane-wave-based 
condensed-phase calculations that are suitably augmented 

Figure 1. Molecular graph representation (shown at the bottom) of 
a polypeptide sequence (shown on the top) where each amino-acid 
group is treated as a node. Higher order simplexes are described as 
per eq 1, and two simplexes of rank-3 (i.e., tetrahedrons) are 
highlighted using orange shading. 
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with localized, polarized, and diffuse Gaussian-type basis 
functions but at little additional cost.115 

2.1. Generalizations to Eq 3: Multiple Simultaneous 
Graphical Depictions and Fragmentation Schemes to 
Obtain Potential Energy Surfaces for Quantum 
Nuclear Treatment. The goal of the current paper is to 
generalize the ideas introduced in refs 106 and 107 to achieve 
an efficient evaluation of multidimensional potential energy 
surface calculations. To begin, it is recognized in refs 106 and 
107 that the graphs obtained by mapping nuclear geometry, 
that is, R .→ , encode all the necessary interactions involved 
in a system, and hence, the vertices, edges, faces, and higher-
order simplexes of such a graph may change during potential 
surface evaluations107 and during AIMD trajectories.106 For 
example, the way in which the vertices are connected may 
change, due to new hydrogen bonds, or the vertices 
themselves may change perhaps through the addition or 
removal of protons, or more generally as part of other 
reactive processes. In general, one may obtain a family of 
graphs .{ } β each providing a different representation of 
energy and gradients, that is 

E R( ),
1,0 . 9⇒ β β (6) 

The key idea in refs 106 and 107 is to write the global 
potential surface as a linear combination of such a family of 
surfaces, and thus, using eq 3, we obtain 

E ER R R( ) ( ) ( ), ,
1,0 9 .  9∑ υ= 

β 
β β{ }β 

(7) 

where the notation E R ( ),9 .  { }β 
, used throughout this paper, is 

meant to imply that a family of graphs .{ } β are used to 
compute the potential energy surface. Using eq 3, we obtain 
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where the fact that each graph may have a different set of 
nodes  and edges  is  depicted using  the  notation 

V V;0 1. ≡ { }β 
β β , and thus, Vr

β is a set of all r-rank simplexes 
in .β . The probabilistic coefficients, {υβ}, in eq 8 are 
obtained in ref 107 by (a) interpreting the surfaces, 
E R ( ), 

1,0 9{ }β , as crude diabatic states124−134 and (b) introducing 
a variational procedure to obtain {υβ}. In this sense, we 
remain strongly influenced by the work in the valence-bond 
literature.127,135−147 Therefore, in essence, we interpret each 
fragmentation protocol (or each graphical connectivity that 
leads to a fragmentation protocol) as yielding a valence bond-
type diabatic state, hence leading to a family of diabatic 
potential surfaces E , 

1,0 9{ }β in eq 7. The coefficients υβ(R) then 
yield adiabatic states as a linear combination of the 
graphically determined molecular fragmentation schemes. 
This paper discusses two main computational issues that 

arise from the overarching goal of computing eq 8 (and eq 9 
below) for arbitrary nuclear dimensions. One aspect deals 

with computing the diabatic potential surfaces E , 
1,0 9{ }β in eq 7, 

using the individual graph-theoretic fragmentation protocols. 
The second aspect deals with computing the adiabatic state 
coefficients, {υβ(R)}. Furthermore, the summation (∑β 
υβ(R)) in eq 8 is the identity, and hence, eq 8 reduces to 

E E 
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where we have designated the correction term in eq 5 using 
the graph index β in the subscript, that is, MBE ,

level,1;level,0 9 Δ β .
As noted above, in the remaining portion of this paper, based 
on eq 9, we develop a scheme to compute multidimensional 
potentials efficiently, at post-Hartree−Fock accuracy, with the 
DFT cost. The associated potential surfaces are then used to 
compute quantum nuclear eigenstates that help gauge the 
error in these potential surfaces. 

2.2. Local Nature of the Expression in Eq 9. The left-
hand side of eq 9 provides energy for a molecular system 
with nuclear coordinates given by R. The right-hand side in 
the equation is a combination of the full-system low-level 
potential energy Elevel,0(R) and an υβ(R)-weighted sum of 
energy-correction terms ( MBE ,

level,1;level,0 9 Δ β , within parenthe-
ses) arising from each graphical description, .β . Essentially, 
what we have carried out here is to improve the energy of a 
full-system low-level calculation, Elevel,0(R), at an additional 
expense of high- and low-level energy calculations of 
molecular fragments (second term in eq 9), that are obtained 
using a family of graphs. While the goal of eq 3, as discussed 
in refs 99, 102−104, 106, 107, and 113−115, has been to 
achieve agreement with Elevel,1(R), which is the full system 
energy at level, 1 theory, that may have a steep algebraic 
computational scaling (see Appendix B), the goal of eq 9 is 
to achieve a similar level, 1 quality potential energy surface, 
but at a reduced cost as implied from eq 9. (See Section 3 
and Appendix C for a detailed discussion on computational 
scaling.) 
For each energy-correction term in eq 9, the key .β 

-dependent portions are the energy differences, ΔEα,r,β
1,0 (R), 

and the multiplicity-factor, r , ,49
α β  , included to avoid  

overcounting as in the energy correction as in eq 3. Both 
of these terms, through dependence on α ∈ Vr

β, only contain 
the molecular fragments with (r + 1) nodes and hence do 
not depend on the complete set of molecular coordinates that 
span the full dimensionality of R. As the energy-correction 
term only requires the energy calculations for the molecular 
fragments and not on the full system, the number of nuclear 
degrees of freedom involved in the fragments that determine 
{ΔEα,r,β

1,0 (R)} is, in general, drastically lower than the full 
dimensionality of R. For example, let us consider the 
molecular system coarse-grained in Figures 1 and 2. In  
Figure 2, the nodes and edges for different graphical 
decompositions are depicted using different colors. As a 
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result, the rank-3 simplexes (tetrahedrons) and all other 
simplexes in Figure 2 contain far fewer nuclear degrees of 
freedom as compared to the full system in Figure 2. In  
addition, the nuclear degrees of freedom captured within the 
orange-colored simplex shown on the left in Figure 2 are, in 
general, different from those sampled by the other simplexes 
such as the orange-colored simplex on the right. This allows 
us to write the nuclear potential energy surface in terms of 
the potential energy functions corresponding to the 
simplexes. Here, the family of electronic structure calculations 
needed in eq 9 is 

E E E ER R R R( )  ( ),  ( ),  ( )r r r r,
level,0 

, ,  
level,1 

, , , 
level,0 

,9 .  ← { { }}α β  α  α β  α{ }β 

(10) 

and we have specifically noted the fact that the molecular 
fragments obtained from graph theory do not sample the full 
molecular space; the corresponding nuclear dimensions 
sampled are represented above using the symbol Rα,r. 
This idea of dimensional reduction obtained from eq 9 is 

similar to the high-dimensional model representation, 29,153 

weighted sum of products of approximations,154,155 and the 
permutationally invariant polynomials156 approach; influenced 
by the early work of Kolmogorov157,158 and Sobol’,159 a high-
dimensional function is written as a linear combination of 
lower-dimensional functions, where these lower-dimensional 
functions may be obtained from random sampling28,153 or 
using neural networks.29,160 To clarify the connection to 
these dimensional reduction techniques, we emphasize that, 
in eq 9 

E RMBE ( 1) ( )
r

r 
r r 

V
,

level,1;level,0 

0 
, ,  

1,0 
, ,  

r 

49
9 

9 ∑ ∑Δ = − Δβ 
α 

α β α β  
= ∈ β 

(11) 

where the sum over “r” is essentially a sum over lower-
dimensional functions that are only dependent on, at the 
most, “r” degrees of freedom. This, of course, is also the 
essence of many-body theory36,66−86 Similar ideas have also 
been explored in ref 161, where methods that utilized 
expressions similar to eq 2 are used to compute potential 
energy correction surfaces that are similar to those presented 

Figure 2. Graphical representation of the coupled quantum nuclear 
and electronic description of the system shown in Figure 1. This 
figure complements eq 9 and the associated discussion. The nodes 
in different colors represent nuclear delocalization due to quantum 
effects. In this paper and in refs 99, 102−104, 106, 107, and 113− 
115, the electronic structure is simplified using graph theory. Here, 
the simplexes shown using orange shadings contain only a small 
subset of all coupled quantum nuclear dimensions. As a result, the 
corresponding ΔEα,r,β1,0 (R) terms in eq 9 only depend on a subset of 
the quantum nuclear dimensions, which enormously reduces 
computational complexity. 

Figure 3. Essential features of the algorithm described in Section 3 and in the Supporting Information. 
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in eq 10. However, the approach here differs in that eq 9 
includes (a) all ranks up to a given order 9, (b) multiple 
levels of theory within an ONIOM format, and (c) a recipe 
to compute post-Hartree−Fock surfaces, potentially at the 
expense of level, 0 theory, as has been discussed in ref 103 
and in Section 3 and Appendix B and Appendix C. These 
connections are also made more explicit in Appendix A. 
Thus, considering that the simplexes indexed by (α,r) 
partition the Euclidean coordinate space of R, each  
contribution, ΔEα,r,β

1,0 (R), to the summation over (α,r) in  eq 
9, only needs to be computed inside a portion of the full 
molecular configurational space (see eq 10), thus contributing 
enormously to the computational efficiency. 

3. COMPUTATIONAL ASPECTS REGARDING 
IMPLEMENTATION OF EQ 9 

We wish to provide general prescriptions regarding the 
implementation of eq 9 toward constructing multidimensional 
potential surfaces. There are multiple considerations to this 
implementation. The resultant algorithm is illustrated through 
Figure 3 using protonated water clusters as examples, where 
we intend to study the coupled quantum behavior of multiple 
shared protons. For example, in Figure 3, we display a 
protonated water trimer along with the real space span of the 
two shared protons (named R1 and R2 in Figure 3). These 
and the other associated parts of Figure 3 are used to explain 
the algorithm here to obtain potential surfaces in arbitrary 
dimensions. The computational tests are carried out on an 
extended version of this system, where multiple protons are 
treated in a quantum-mechanical fashion to allow the coupled 
correlated treatment of such systems. The Supporting 
Information sections complement the discussion in this 
section. 
While the fragment energy components, {Eα,r,β 

level,1 (Rα,r),-
Eα,r,β 
level,0 (Rα,r)} in eqs 9 and 10, are only dependent on a 

smaller portion of the full configurational space, as outlined 
in Section 2.2 and Appendix C, the quantity Elevel,0 (R)
depends on the full configurational space. Thus, we first 
provide a sampling measure and the associated clustering 
algorithm that allows us to choose a representative set of 
sample points in multidimensional space where the individual 
terms in eqs 9 and 10 are to be evaluated. The sampling 
measure introduced here is discussed in more detail in 
Section S2 and is influenced by previous work, 32,162−164 

where we have introduced Shannon entropy-based sampling 
measures163,164 along with measures that depend on local 
length scales of potentials32,162 to help determine a subset of 
sample points that could be truly representative of a potential 
surface. The studies in refs 32 and 162−166 have also 
demonstrated the computational efficiency and accuracy of 
such measures. However, here, our sampling measure is 
simpler and less physically motivated as compared to those in 
refs 32 and 162−164; here, it is tailored toward the 
applications in Section 4. More precisely, while the  
implementations in refs 32 and 162−164 allow for a 
nondirect product grid of sample points, the implementation 
here only uses a direct product of sample points. Details 
regarding the sampling measure are provided in Section S2. 
As stated earlier, however, all essential features of the 
algorithm are captured in Figure 3. Using the algorithm in 
Section S2, specifically the sampling function in eq S2 (which 
is shown as a contour plot, on the top-right of Figure 3), we 
sample the two-dimensional potential energy space using a 

weighted k-means-clustering approach167−170 which works in 
a similar fashion to the centroid Voronoi formalism171−175 

and uses Lloyd’s algorithm.176 For example, the illustration 
on the top-right of Figure 3 depicts the location for 200 
sample points chosen from a regular grid containing 
approximately 10,000 points (i.e., 2% of the total number 
of grid points). These samples are regions where electronic 
structure calculations {Elevel,0(R); {Eα,r,β 

level,1 (R),Eα,r,β 
level,0 (R)}} in eq 

10 are to be performed. The sample points are shown using 
green circles on the top-right and using different colors on 
the bottom-right of Figure 3 for reasons that will soon 
become clear. Detailed discussions on the algorithmic aspects 
are provided in Section S2. 
The sampling measures yield a family of sample points in 

the multidimensional potential surface space. However, 
multiple sample points obtained from our sampling measure 
(see Section S2) may have similar graphical connectivities. As 
a result, a clustering algorithm is discussed in Section S3, 
where the sample points obtained are clustered together 
based on the similarity of their respective graphical 
definitions. The associated cluster centroids are shown 
using blue circles (bottom figures) in Figure 3. The clustering 
algorithm provides a representative family of graphs: .{ }β . 
For every given graph within this set, .{ }β , the electronic 
energy is computed at all the sample points (green circles on 
the top-right of Figure 3) obtained from our sampling 
treatment, suitable interpolation of which yields crude 
diabatic states, E R ( ), 

1,09{ }β . A key step in our analysis is the 

interpretation of E R( ), 
1,09{ }β , in  eq 8, as crude diabatic 

states. 124−134 Clearly, the presence of nine such diabatic 
states (nine blue circles inside each of the two subfigures in 
the lower panel of Figure 3) for the two degrees of freedom 
is realized through the natural interpretation that each proton 
has three Marcus-type diabatic locations, one on the donor 
side, one on the acceptor side, and a third that is roughly 
shared between the donor and acceptor sites that may be 
critical for short-strong hydrogen bonds.177−181 This yields 
the nine diabatic states from the nine graphical connectivities 
and produces nine potential surfaces for the illustrated two-
dimensional case. In higher dimensions, this potentially leads 
to a maximum of 3NDim such states. However, as we see in 
Section 4, the number of accessible diabatic states is far fewer 
as compared to 3NDim. This is due to the fact that for any 
given set of donor−acceptor distances, only a subset of the 
3NDim diabatic states are energetically accessible. 
As noted earlier, in computing the weights, υβ(R), we 

remain influenced by the empirical valence bond (EVB) 
formalism.127,135−147 Thus, each graphical description .β 

depicts a valence bond-type diabatic state, and hence, the 
coefficients υβ(R) transform from the family of “diabatic 
states”, E , 

1,09{ }β , to the “adiabatic states” depicted on the left of 
eq 9. Section S5 is devoted to summarizing the Hamiltonian 
formalism adapted from EVB for our purposes here and is 
also discussed in detail in ref 107. Thus, the adiabatic linear 
combinations yield 

E ER 
R 

R( )  
( )  

( ), 
1,0

,9 9 . 

υ
{ } ⎯ →⎯⎯⎯⎯⎯⎯ β 

β
{ }β (12) 

through the variational procedure that is designed in a 
fashion commensurate with EVB127,135−147 theory. The 
procedure is also illustrated in Figure 3, where the molecular 
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graph centroids (blue spheres) yield diabatic states, 
E R ( ), 

1,09{ } β , that are utilized with the variational formalism 
in Section S5 (also see ref 107 for a detailed description of 
this algorithm) to obtain the adiabatic state, E R ( ),9 .{ }β 

. 

4. EFFICIENCY AND ACCURACY OF THE 
MULTITOPLOGY FORMALISM AND 
MULTIDIMENSIONAL POTENTIAL SURFACES 

We examine the accuracy and efficiency of the formalism 
discussed above in obtaining multidimensional potential 
energy surfaces at post-Hartree−Fock levels of theory at 
reduced computational effort. The precise reduction in costs 
is summarized in Appendix C. The chemical system 
considered is a protonated water wire4−7,107,145 ((H2O)6H

+) 
shown in the top panel of Table 1. This class of problems is 
prevalent in a wide range of biological systems including 
membranes,182−184 ion channels185 where it supports charge 
transport, fuel cell technologies,186 and photosynthetic 
reaction active sites.183 Proton transfer in these systems 
follows the Grotthuss mechanism where a concatenated 
sequence of water molecules makes the transport of excess 
charge efficient compared to mass transport required for 
other ions.4 Furthermore, the light nature of the transferring 
proton makes quantum nuclear effects critical,127,187−189 and 
specifically, coupled multidimensional quantum-nuclear ef-

fects to be important. Hence, we use this system as a test bed 
for our multidimensional potential energy surface calculations. 
In Appendix D, we introduce a series of error estimates to 

gauge the accuracy of the potentials obtained from the 
formalism discussed above. For all the graph-theoretic 
potential energy calculations performed here, we have used 
B3LYP/6-31++g(d,p) and MP2/6-31++g(d,p) for “level, 0” 
and “level, 1” (from eqs 8 and 4), respectively. That is, our 
target multidimensional potential surface is the MP2/6-31+ 
+g(d,p) level of theory. For computing errors, the reference 
level of theory is always the full system (without 
fragmentation) depicted as “level, 1” (i.e., MP2/6-31+ 
+g(d,p)). In Section 4.1, we address the issue of sampling 
multidimensional potentials, as necessitated by the coupled 
treatment of multiple protons within the water-wire problem 
considered here. As noted in eqs C1, C2, C3, and C4, this is 
complicated by the intrinsically steep scaling of electronic 
structure calculations needed during potential surface 
calculations, as well as the number of these calculations. 
These challenges are substantially alleviated by the use of eq 
9 which provides an approach to reduce the number of 
quantum nuclear dimensions that the fragment energies span 
and through the sampling function discussed in Section S2. 
We also analyze how these sampled grid points are 
distributed. Following Section 4.1, we evaluate the accuracy 

Table 1. Grid Parameters for Potential Energy Surface Calculationsa 

dimensionality grid dimensions total number of grid pointsb number of sampling pointsc 

2 (R1, R2) 0.8 Å × 0.8 Å 992 = 9801 98 (1%)−2048 (20%)d 

3 (R1, R2, R3) 0.8 Å × 0.8 Å × 0.8Å 493 = 117,649 3456 (3%) 
4 (R1, R2, R3, R4) 0.8 Å × 0.8 Å × 0.8 Å × 0.8 Å 494 = 5,764,801 41,472 (1%) 
5 (R1, R2, R3, R4, R5) 0.8 Å × 0.8 Å × 0.8 Å 235 = 6,436,343 65,536 (1%) 

0.8 Å × 0.8 Å 
aThe actual physical dimensions are along the proton transfer coordinates of a water-wire molecule ((H2O)6H

+) shown in the figure immediately 
above the table. The variables R1, R2, ..., R5 are represented using discretized one-dimensional grids aligned along the donor−acceptor axes noted in 
the figure using dashed lines. The donor−acceptor distances and the shared proton’s distances from the donor are also shown for all the grids. In 
the Supporting Information, we provide a brief section further describing the grid. bThis total number also represents the number of electronic 
structure energies that may be necessary and depicts the complexity in the absence of sampling. cActual number of electronic energies computed 
when the sampling function, discussed in Section 4 and in the Supporting Information, is used. The electronic energies are obtained using eq 9. 
dRange of sample-point densities considered. 

Table 2. Error Estimates and Grid Compression Factors (from Sampling) for the Two-Dimensional Casea 

0.01b 0.02b 0.03b 0.04b 0.05b 0.06b 0.07b 0.08b 0.09b 0.10b 0.21b 

ΔϵV,ω=ρ0 
c 0.23 0.11 0.11 0.13 0.12 0.16 0.18 0.11 0.11 0.11 0.11 

ΔϵV,ω=B 
c 0.07 0.06 0.05 0.04 0.04 0.04 0.05 0.04 0.03 0.04 0.05 

ΔϵEα=0 d 0.22 0.03 0.06 0.12 0.08 0.16 0.18 0.07 0.08 0.07 0.06 
aThe number of sample points dictates the number of electronic structure energies needed and hence depicts the complexity. Also, see Table 1. 
bRatio of the number of sampling points (last column in Table 1) to the total number of grid points (penultimate column in Table 1). The 
numbers along the first row depict the extent of grid compression due to sampling. cPotential surface error estimates (in kcal/mol) as per eq D1. 
The errors ΔϵV,ω=ρ0 and ΔϵV,ω=B are obtained using the weighting function ω as ρ0, the ground-state wave packet density, and the Boltzmann factor 
with a temperature of 300 K. See Appendices D and E. d Eigenvalue error estimates (in kcal/mol) as per eq D2. Ground-state, first-excited-state, 
and second-excited-state eigenvalues are 6.44, 12.05, and 13.39 kcal/mol, respectively, above the minimum. See Appendices D and E. 
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and efficiency of the methods introduced in Section 2 in 
computing higher dimensional potential surfaces. 
4.1. Analysis of the Sampling Measure and Its Effect 

on Accurate Multidimensional Potentials When Com-
bined with the Graph-Theoretic Protocol. We consider a 
range of sample sets as outlined in Tables 1 and 2. 
Specifically, the donor−acceptor span of the five hydrogen 
bonds on the water wire is treated as a single, coupled, 
quantum mechanical problem, and by treating them in a 
sequential fashion (rows in Table 1), we allow the complexity 
of the problem to be increased by one shared proton 
dimension at a time. This allows for the concerted, correlated 
treatment of the Grotthuss proton-shuttle problem. The 
exponential scaling of the number of grid points and the 
associated number of electronic structure calculations needed 
for an accurate potential energy surface is also noted in Table 
1. Furthermore, as is clear from eq 10, eq 9 is divided into 
multiple parts. While the number of Elevel,0 calculations scales 
exponentially with system size, with one value needed for 
every grid point shown in Table 1, the number of fragment 
calculations scales within a reduced dimensional space. Our 
goal here is to reduce the steep algebraic scaling of each 
electronic structure calculation and to reduce the number of 
such electronic structure calculations needed to obtain the 
potential surface, through the sampling measures discussed in 
Section S2. Furthermore, the family of electronic structure 
calculations captured using eq 10, to be performed on the set 
of sampled points, are efficiently parallelized using a python-
based job-scheduler library,106 making it feasible to obtain 
post-Hartree−Fock level surfaces for the high-dimensional 
cases presented here. 
For the two-dimensional grid, referred to as (R1, R2) in  

Table 1, a range of sample points is considered. These 
include sampling data ranging from 1 to 20% of the grid 
points, and these sample points are chosen from a uniformly 
distributed two-dimensional grid, defined using 99 grid points 
along each of the quantum nuclear dimensions shown on the 
figure in Table 1. This amounts to nearly 10,000 grid points, 
with a grid spacing of approximately 0.008 Å where good 
quality estimates of the electronic structure energies are 
needed. The question addressed in Table 2 is whether the 
sampling technique will allow us to perform this task with as 
little as 100 calculations (i.e., 1% of the total number of grid 
points), delivering, in the process, an acceptable accuracy in 
the sub-kcal/mol range for the potential surface, where the 
error is gauged using the estimates presented in Appendix D. 
A range of sampling points is considered for the two-
dimensional case to gauge the computational advantage 
afforded by the sampling protocol, and clearly, as seen in 
Table 2, the errors are in the sub-kcal/mol range. Table 2 
provides (a) the quantum-nuclear ground-state (ψ0) weighted 
error on the full potential surface ΔϵV,ω from eq D1 in 
Appendix D, with additional details in Section S5, (b) the 
Boltzmann factor-weighted error on the potential surface, 
ΔϵV,ω from eq D1 in Appendix D, and (c) the absolute errors 
in the multidimensional quantum-nuclear eigenenergies 
({Ei}), from eq D2 for the two-dimensional, (R1, R2), case. 
Clearly, many of these error estimates need the multidimen-
sional quantum-nuclear eigenstates to be computed, and in all 
cases considered here, the complexity of obtaining the 
solution of such eigenvalue problems is compounded by its 
size, as reflected by Table 1. Hence, we use the Arnoldi 
iterative eigen-spectral approach.190−192 The Arnoldi method 

is a generalization of the Lanczos iterative diagonalization 
procedure, where repeated action of a function of an operator 
on some initial random vector yields a Krylov basis. It has 
been shown190 that representing the original operator using 
the Krylov vector basis leads to an eigenvalue problem that 
rapidly converges to the exterior eigenvalues. Details 
regarding construction of the multidimensional Hamiltonian 
and efficient action of the same on large-sized vectors are 
described in Appendix E and ref 164. 
All energetic measures of errors on the post-Hartree−Fock 

potential surfaces are well within the sub-kcal/mol range, in 
Table 1, at a much affordable computational cost. For 
example, the ground-state weighted errors, ΔϵV,ω, in  Table 2 
are in the range 0.11−0.23 kcal/mol where the maximum 
error is seen when the fewest number of sampling points is 
used. Similarly, the smallest sample set leads to the largest 
error in the Boltzmann-weighted errors, eigenenergy errors, 
and the eigenstate density errors. The ground-state weighted 
errors on the potential surface are less than 0.2 kcal/mol in 
all except for the smallest sample-size case, and hence, it is an 
acceptable error. 
The errors in eigenenergies increase for higher eigenstates 

for each sample set. For example, the absolute errors in zero-
point energy, first-excited-state eigenenergy, and second-
excited-state eigenenergy for a grid sampling compression 
factor of 0.02 (i.e., sample points being 2% of the grid) are 
0.03, 0.11, and 0.20 kcal/mol, respectively. These errors are 
small and acceptable, and it must also be noted that the 
thermal population of the second excited vibrational state is 
negligible. 
In Table 3, we present the errors for the interpolated 

potential surface, E R( ),9 .  { }β 
, for the coupled three-, four-, and 

five-dimensional quantum mechanical treatment of the 
hydrogen nuclear problem. As noted earlier, the coupled, 
quantum treatment of nuclear degrees of freedom is a 
challenging problem in computational chemistry, due 
potentially to (a) the exponential scaling in the number of 
electronic structure calculations that needs to be performed 
with the increase in nuclear dimensions (see Table 1, total 
number of grid points), (b) the exponential scaling of the 
time evolution of a wave packet state describing such a 
coupled system (see Appendix E), and (c) the steep 
polynomial scaling of the electronic structure for each 
individual geometry (or grid points in Table 1). The tests 
in Table 3 provide direct evidence of the use of eqs 7−9 in 
providing accurate higher-dimensional, correlated potential 
energy surfaces, with scaling costs as described in Appendix 
C. For the two-, three-, and the four-dimensional results, the 
reference potential energy surfaces are determined at the 
MP2/6-31++G(d,p) level of theory on the full uniform grid, 
defined as in Table 1, without any sampling procedure and 
are compared with the results of eq 9. For the five-
dimensional result, both the reference and the potentials 
computed using eq 9 are computed using the sampling 
approach using only 1% of the uniform grid defined in Table 
1. Clearly, as seen from Table 3, all error estimates in 
obtaining MP2 level potential surfaces are well within the 
sub-kcal/mol accuracy range. In future publications, we will 
further evaluate the use of this method in performing 
accurate quantum nuclear dynamics studies in higher nuclear 
dimensions. Next, we provide an analysis of the sampling 
procedure through the radial distribution of sample points 
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explained in Section 4.1.1 below. We analyze the distribution 
of sample points for two-, three-, and the four-dimensional 
problems only because we computed a full-dimensional 
potential energy surface as a reference for these cases. In 
contrast, for the five-dimensional case, we used the sampling 
approach to calculate the reference potential; thus, we are 
excluding that case in the next section. 
4.1.1. Distribution of Sample Points in Higher Dimen-

sions. To further gauge the accuracy and efficiency of the 

sampling approach, in conjunction with the graph-theoretic 
method, we next consider the distribution of sample points 
obtained from this technique. As noted above, the errors in 
potential are in the sub-kcal/mol range for chemical accuracy. 
While the error estimates discussed above do allow us to 
gauge the effectiveness of the sampling measures, it is also 
important to analyze the location of the chosen sampled grid 
points to probe the effectiveness of the sampling measures. 
For this purpose, we consider all cases ranging from the two-
dimensional coupled quantum-nuclear problem, where the 
two nuclear dimensions labeled (R1, R2) in  Table 1 are 
considered simultaneously, to the four-dimensional coupled 
problem labeled (R1, R2, R3, R4) in  Table 1. It is well known 
that coupled behavior of quantum nuclear dimensions, 
especially for protons, is critical for a range of spectro-
scopic193,194 and dynamical problems,127 but the computa-
tional complexity grows exponentially with the number of 
nuclear degrees of freedom, making these studies prohibitive, 
especially when state-of-the-art post-Hartree−Fock level 
surfaces are also desired. In studying such complex problems, 
it is crucial to sample the lower energy regions of the 
potential well enough to capture critical quantum nuclear 
effects. Thus, along with the errors on potential surfaces 
(using estimates in Appendix D), the errors in quantum 
nuclear effects such as eigenenergies and quantum nuclear 
eigenfunctions (see Appendix E) are a direct result of the 
choice and location of sampling performed here. For example, 
the errors in low-energy regions contribute more to the 
ground-state weighted error computed using eq D1. 
Figure 4 provides an analysis of the spatial distribution of 

sampled grid points for all cases, where the plots within the 
different subfigures correspond to the different dimensions, 
such as (R1, R2) for 2D, (R1, R2, R3) for 3D, and so on. To 
allow a visual analysis of the distribution of grid points in 
higher-dimensional problems, we present radially averaged 
distributions of the sample points (blue bars), associated 
distribution of all grid points on the uniform regularly spaced 
grid (red bars) used for interpolation of the potentials (see 
Section S4), and the radially averaged distribution functions 
computed with respect to the distance from the minimum 
energy configuration represented as Rmin, according to 

Table 3. Error Estimates for the 3D, 4D, and 5D Casesa 

2D b 3D b 4Db 5Db 

(R1, 
R2)

c 
(R1, R2, 
R3)

c 
(R1, R2, R3, 

R4)
c 

(R1, R2, R3, 
R4, R5)

c 

0.01d 0.03d 0.01d 0.01d 

no. of diabatic states 
included 

6 18 18 18 

ΔϵV,ωe 0.23 0.30 0.21 0.37 
ΔϵV,ωf 0.15 0.15 0.12 0.20 
ΔϵEαg 0.22 0.16 0.10 0.05 
aThe number of sample points dictates the number of electronic 
structure energies needed and hence depicts the complexity. Also, see 
Table 1. bDimensionality of the quantum nuclear grid which 
represents, in this case, the number of coupled quantum nuclear 
(proton) dimensions. See the figure above. c2D: total number of grid 
points = 9801 and total number of sample points = 100. 3D: total 
number of grid points = 117,649 and total number of sample points = 
3456. 4D: total number of grid points = 5,764,801 and total number 
of sample points = 41,472. 5D: total number of grid points = 
6,436,343 and total number of sample points = 65,536. dRatio of the 
number of sampling points (last column in Table 1) to the total 
number of grid points (penultimate column in Table 1). The numbers 
along the first row depict the extent of grid compression due to 
sampling. ePotential surface error estimates (in kcal/mol) as per eq 
D1. The quantity ω ≡ ρ0 and the ground-state wave packet density. 
f Potential surface error estimates (in kcal/mol) as per eq D1. The 
quantity ω is chosen to be the Boltzmann factor with a temperature of 
300 K. gEigenvalue error estimates (in kcal/mol) as per eq D2. 
Ground-state eigenvalue error. 

Figure 4. For each of the three subfigures presented above, the top panel shows the radially averaged eigenstate density distribution for the first 
three eigenstate probability densities, as obtained from eq 13. The bottom panel in each subfigure shows, in blue, the radial distribution of the 
fraction of sample points, again computed using eq 13, the radial distribution of the fraction of points on a uniform grid (red bars, left vertical 
axis), and the radially averaged potential energy, eq 14 (black line, right vertical axis). The first three eigenenergies are also shown using the 
horizontal line using the same colors as those for the eigenstates in the top panel. 
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f fR R R R( ) d ( ; )Rmin min∫⟨ || − || ⟩ = Θ || − || Θ 
(13) 

where we have represented the multidimensional space as {|| 
R − Rmin||;Θ}, with ||R − Rmin|| depicting the radial distance 
from the minimum potential energy region and Θ providing 
the appropriate cumulative, multidimensional orthogonal set 
of variables. For example, the radially averaged potential 
energy surface E R ( ), 9 .⟨ ⟩ { }β 

(black trace in the subfigures of 

Figure 4) 

E ER R R( )  d  (  ; ), , min9 .  9 .∫⟨ ⟩ =  Θ  ||  −  ||  Θ  { } { }β β (14) 

as a function of distance from the lowest energy configuration 
in the bottom panels of the three subfigures is shown in 
Figure 4. The three lowest eigenvalues and eigenfunctions are 
also marked with horizontal green lines of different shades in 
each case. We note that the blue bars showing the radial 
distribution of the fraction of sample points are skewed 
toward the lower energy regions as compared to the full grid 
represented using the red bars. Furthermore, the blue bars 
appear to provide adequate sampling in regions where the 
eigenstates have larger populations, as may be seen by 
visually correlating the radial population of eigenstates 
provided immediately above in the three subfigures in Figure 
4, also computed as per eq 13. 

5. CONCLUSIONS 

Over a recent set of publications, we have shown how graph-
theoretic methods combined with ONIOM and many-body 
theory can be used to perform (a) accurate post-Hartree− 
Fock AIMD at the DFT cost for medium- to large-sized 
molecular clusters, (b) hybrid DFT electronic structure 
calculations for condensed-phase simulations at the cost of 
pure density functionals, (c) reduced cost on-the-fly basis 
extrapolation for gas-phase AIMD and condensed-phase 
studies, and (d) accurate post-Hartree−Fock level potential 
energy surfaces at the DFT cost for quantum nuclear effects. 
The salient features of our approach are ONIOM-like in that 
(i) the full-system (cluster or condensed phase) calculation is 
performed at a lower level of theory (pure DFT for the 
condensed phase or hybrid DFT for molecular systems) and 
(ii) this approximation is improved through a correction term 
that captures all many-body interactions up to any given 
order within a higher level of theory (hybrid DFT for the 
condensed phase and CCSD or MP2 for cluster), combined 
through graph-theoretic methods. Specifically, a region of 
chemical interest is coarse-grained into a set of nodes, and 
these nodes are then connected to form edges based on a 
given definition of local envelope (or threshold) of 
interactions. The nodes and edges together define a graph, 
which forms the basis for developing the many-body 
expansion discussed here, embedded within an ONIOM 
scheme, but using higher-order simplexes that are composed 
from the graphical description. In general, the effect of adding 
a higher-order correction on the accuracy of potentials 
diminishes after the consideration of a few low-rank 
simplexes, and hence, the required fragments are far smaller 
than the full molecular system. In fact, the rapid convergence 
of the formalism here, as a function of many-body rank, has 
been previously demonstrated for condensed systems115 and 
molecular clusters.106 

However, when nuclear quantum effects are critical, 
multiple graphical descriptions are simultaneously needed to 
describe the potential energy surface. In this paper, we 
provide a general variational approach that combines multiple 
graphical descriptions of molecular systems to obtain accurate 
post-Hartree−Fock level potential surfaces at the DFT cost. 
The approach also potentially allows a drastic reduction in 
the computational complexity involved in computing accurate 
multidimensional potential surfaces. Due to the demonstrated 
rapid convergence of the approach with increasing rank, 106,115 

the fragments considered for many-body expansions contain 
far fewer nuclear degrees of freedom than that of the full 
molecular system and hence span a much smaller portion of 
the conformational subspace. This provides a substantial 
reduction in the exponential scaling, and it is shown that the 
number of electronic structure calculations needed in + 

quantum dimensions reduces from ( )6 5+ to ( )( 1) /6 5 9 + -+ 

when the graph-theoretic expressions are truncated at order 
9 and the molecular system is partitioned into - nodes 
before creating a graph from these nodes. In addition, we also 
reduce the number of potential energy calculations by orders 
of magnitude, through a multidimensional grid clustering/ 
tessellation approach, which further reduces the computa-
tional complexity. 
The method is demonstrated for the protonated water-wire 

systems, where coupled multidimensional quantum nuclear 
effects are thought to have a significant189 impact on proton 
transfer dynamics. We utilize our approach to compute 
accurate multidimensional post-Hartree−Fock potential en-
ergy surfaces. In all cases, accurate post-Hartree−Fock 
potential surfaces, in agreement with regular post-Hartree− 
Fock methods to within sub-kcal/mol, are obtained in 
multiple dimensions, at a much-reduced computation cost. 

■ APPENDIX A 

Explicit Forms of Eqs 2, 3, and 9 for Two-Body and 
Three-Body Interactions 

Illustration of Connections to Two-Body Theory. The 
choice of 1 9 = in eq 2 leads to 
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(A1) 

where the quantities pα 
0,0 and pα 

0,1 are the number of times the
αth node appears in the set of all nodes (V0) and all edges 
(V1), respectively; similarly, pα 

1,1 is the number of times the 
αth edge appears inside the set of all edges. Since the sets 
such as V0, V1, and so forth do not contain any duplicates, 
pα 
0,0 = pα 

1,1 = 1. Additionally, the first term in eq A1 
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V V
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provides the one-body contribution to the approximation to 
the potential energy surface using many-body expansions. 
The remaining portion of eq A1 
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The many-body expansion described in eq A1 is combined 
with the ONIOM scheme computed at two levels of theory 
labeled “level, 1” and “level, 0” in eq 3. Considering 1 9 = in 
eq 3 similarly leads to 
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Thus, a many-body expansion is constructed on the 
difference in level, 1 and level, 0 energies as recommended 
from ONIOM. Correspondingly, eq 9 takes the form 
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where the fact that each graph may have a different set of 
nodes  and edges  is  depicted using  the  notation 

V V; 0 1. ≡ { }β
β β . 

Illustration of Connections to Three-Body Theory 
The choice of 2 9 = in eq 2 leads to 
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and rearranging terms leads to 
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where the quantities pα 
0,0 , pα 

0,1 , and pα 
1,1 hold the same meaning 

as in eq A1 defined above. Similarly, the quantities pα 
0,2 , pα′ 

1,2 , 
and pα″

2,2 are the number of times the αth node, the α′th edge, 
and α″th triangle appears in the set of all triangles, V2. As  
mentioned earlier, the sets of {Vr} do not contain any 
duplicates, and hence, pα 

2,2 = 1. The final bracketed term, 
{···}, in eq A5 

E p E p ER R( )  ( )  
V V V 

,2 
level,I 1,2 

,1 
level,I 0,2 

,0 
level,I 

2 1 0 

∑ ∑ ∑ − + 
α 

α 
α 

α α 
α 

α α 
∈ ∈ ∈

is the three-body correction to the two-body many-body 
expansion, in eq A2. The many-body nature of eq 2 is very 
clear from eqs A2 and A5. 
The choice of the many-body expansion for 2 9 =

obtained in the eq A5 when utilized in eq 3 leads to 
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and rearranging terms leads to 
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The ONIOM scheme defined using eq A6 with an MBE 
truncated at 2 9 = is calculated using a series of molecular 
graphs .β considered as diabatic states, and an adiabatic state 

is obtained using eq 9 as 
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where, again, the embedded many-body nature of the 
approach is clear. 

■ APPENDIX B 

Comparison of Convergence Properties of Eqs 2 and 3 as 
a Function of 9 
Our previous studies in refs 115 and 106 have shown that for 
a variety of problems and for a variety of nuclear 
configurations, obtained from AIMD calculations that use 
eq 3, the resultant energy and dynamical correlation functions 
converge very quickly to the correct, correlated electronic 
structure result obtained from CCSD and MP2 levels of 
theory on the full system. Thus, all our previous results in 
refs 99, 102−104, 106, 107, and 113−115 have always been 
compared with the full-system results computed at the target 
post-Hartree−Fock correlated level of theory for dynamics 
and for potential surfaces. This, of course, includes all long-
range electronic effects. The convergence of eq 3 which is the 
ONIOM-style expression with embedded many-body ex-
pansions is drastically improved as compared to standard 
many-body theory. Figures S14 through S16 and S20 in ref 
115 and Figures 5 and 6 in ref 106 highlight this idea. We 
provide here Figures 5 and 6 to summarize this convergent 
behavior. These figures are obtained from 10 ps-long AIMD 
trajectories obtained in ref 106 for the protonated 21-water 
cluster, (H2O)21H

+. 
As highlighted in Appendix A, eq 2 is basically a many-

body expansion that is made efficient due to the use of 
graph-theory implementations within Python. However direct 
use of eq 2 and hence many-body theory does not converge 
rapidly to the post-Hartree−Fock result, as compared to eq 3. 
This is seen from Figure 5. Here 

E E E MBE, 
level,I 

MBE, 
level,I 

MBE, 1 
level,I 9 9 9Δ ≡ − − (B1) 

where the two terms on the right are two successive 
approximations from eq 2 and in Figure 5b, and here 

MBE MBE MBElevel,1;level,0 
1 

level,1;level,0 9 9 9Δ Δ ≡ Δ − Δ − (B2) 

and MBElevel,1;level,0 9 Δ is the correction term in eq 3.
Certainly, eq 3 converges faster as compared to eq 2. This 
result not only holds for clusters of different sizes but also for 
periodic condensed phase systems, as discussed in ref 115. In  
Figure 6, we also show that eq 3 converges to the best 
possible result, in this case obtained using six-body 
interactions obtained with 5 9 = in a systematic manner. 

Figure 5. Rapid convergence of eq 3 (b) as compared to eq 2 (a) in obtaining accurate CCSD energies. The data are obtained from all 
configurations from a 10 ps AIMD trajectory, for a protonated 21-water cluster computed in ref 106, which uses eq 3 as the form of energy. 
The horizontal axis 9 represents the rank of the graph and hence the order of MBE ( 19 + ). For example, 2 9 = implies three-body 
interactions and so on. Hence, while eq 2 in the paper and consequently MBE-type approaches need 3 9 = (four-body terms) for sub-kcal/mol 
convergences, this is already the case where 2 9 = and lower provides much more satisfactory results when using eq 3. 
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The vertical axis in Figure 6a presents the difference between 
eq 2 at specific values of 9 with respect to the maximum 
computed value 5 9 = which includes all many-body 
interactions until six-body terms. Thus 

E E MBE, 5 
level,1 

MBE, 
level,1 9 9−= (B3) 

Similarly, Figure 6b contains the analogous quantity for eq 
3 

E E 5 
1,0 1,0 9 9−= (B4) 

■ APPENDIX C 

Intrinsic Computational Scaling of Eq 9 and the Effect of 
Sampling 
The number of electronic structure calculations needed to 
compute the potential surface, E R ( ).{ }β 

, obtained from the 

associated set of fragment energies, for a set of nuclear 
geometries within R, scales exponentially with nuclear 
dimensions. For example, let us consider +-nuclear 
dimensions with each dimension containing 5 discretizations 
where potential energy surface values are to be evaluated. 
Thus, in total, 5+ potential energy calculations are to be 
performed. Furthermore, the computational scaling for each 
electronic structure calculation is steeply algebraic when 
accurate post-Hartree−Fock results are desired. Through refs 
99, 102−104, 106, 107, and 113−115 and the vast resources 
in the fragmentation literature, 34,35,37,39−41,43,50,52,53,56,58,59, 
61−63,65−67,69,71,72,74−76,78,81,83,85,98,116−120,195−199 a plausible 
solution to the steep algebraic scaling problem has been 
developed. 
If we directly use eq 9, one may imagine a total of -

coarse-grained nodes being created from the graphical 
decomposition, where, for the sake of simplicity, we assume 
that each node contains e 5 electronic basis functions. 
Furthermore, if we assume that the +-nuclear dimensions 
are equally partitioned into the - nodes (see Figure 2), the 
number of potential energy surface values to be evaluated for 
each node is of the order of / 5 5+ - + ≪ . Thus, the overall 
complexity for direct evaluation of eq 9 becomes 

( ) ( ( 1) ) 

( (  1) )  

e 
L ( 1) / 

e 
L 

e 
H 

5 6 -5  5  6 9  5  

6 9  5  

+ 9 + -{ · [ ] + ·[ [ + ]

+ [ + ] ]} 

+ 

(C1) 

here, the superscripts H and L indicate the raw algebraic 
scaling of the level, 1 and level, 0 calculations, respectively. 

Clearly, the computational complexity in eq C1 arises from 
two sources. However, the second term of eq C1, 

( ( 1) ) ( ( 1) )( 1) /
e 

L 
e 

H5 6 9 5 6 9 59 + -{ ·[ [ + ] + [ + ] ]}+ , i s
much smaller in complexity than the full evaluation in the 

absence of molecular fragmentation, that is, ( )e
H5 6 -5+· [ ] , 

as highlighted in Figure 2 using brown-colored simplexes. 
The complexity of the higher level electronic structure 
portion of the molecular potential surface evaluations is 
reduced through the use of eq 9 to the order of 

( ) ( ( 1) )e 
H ( 1) / 

e 
H5 6 -5  5  6 9  5+ 9 + -{ · [  ] →  ·[ [ +  ] ]}+ 

(C2) 

In Section S2, we introduced a sampling measure that is 
used to reduce the number of calculations. The discrete 
sample obtained using the algorithm discussed in Section S2 
is the set of nuclear configurations where electronic structure 
computations are to be performed to obtain the quantities in 
eq 10. As seen in Section 4, the size of the discrete sample 

set is very much smaller than 5+ , for +-nuclear dimensions 
with each dimension containing 5 discretizations where 
potential energy surface values are to be evaluated (see 
Tables 1−3). This further reduces the scaling of the 
algorithm, as discussed in eq C1, to  

( ) ( ( 1) )

( (  1) )
sampling 

( )

( (  1)  )  ( (  1) )

e 
L ( 1) / 

e 
L

e 
H

s e 
L 

s 
1/

e 
L 

e 
H

5 6 -5  5  6 9  5
6 9  5

5 6 -5  5
6 9  5  6 9  5

+ 9 + -

9 -

· [  ] +  ·[ [ +  ]

+ [ + ] ] 

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ { · [ ] + · 

[ [ + ] + [ + ] ]} 

+ 

+

(C3) 

where the quantity s 5 represents the size of the sample set 
obtained using the discussion in Section S2, the lower scaling, 
full system part of the calculation is made efficient by 

sampling ( ) ( )e
L 

s e
L 5 6 -5 5 6 -5+· [ ] → · [ ] , and the higher 

scaling portion indeed undergoes a large reduction in 
complexity through 

( )
eq 9 

( ) 
sampling 

( )( 1) / 
s 

1/6 5 6 5 6 5 + 9 + - 9 -⎯ →⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯+ + 

(C4) 

and s 
1/ ( 1) /5 59 - 9 + -≪+ + . 

Figure 6. Similar to Figure 5, but now, the accuracy of each expression is considered with respect to the best case 5 9 = result for each case. 
Clearly, the convergence of the ONIOM result is superior at lower levels of 9 as compared to the MBE result. 
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■ APPENDIX D

Error Estimates Used to Compute the Accuracy of the 
Multitopology Potential Surfaces 
We introduce a series of error estimates used to gauge the 
accuracy of the potentials computed by the approach 
introduced in Section 2. Errors for the interpolated potential 
are computed using the absolute deviation of E R ( )  .{ }β 

from 

its reference level, full-system level, 1 calculation 

E ER R R Rd ( ) ( ) ( )V, , ref9 .∫ ωΔϵ = | − |ω { }β (D1) 

where Eref(R) is the potential energy computed at level, 1 of 
electronic structure theory at configuration R. The quantity 
ω(R) acts as a filter that has a higher weight in the lower-
energy critical regions of the potential. We have used two 
different kinds of approximations for ω(R). (a) We have used 
the Boltzmann approximation to construct these weights with 

E kTR R ( )  exp(  ( )/ )
N 

1 
ref 

0 
ω = − , where T is the room temper-

ature (300 K) and N0 ≡ ∫ω(R)dR is a normalization 
constant. (b) We have also used the quantum nuclear ground 
eigenstate density, associated with the potential surface as an 
approximation to ω(R), in computing such errors. Obtaining 
the quantum nuclear ground state is carried out using the 
Arnoldi iterative diagonalization190−192 scheme presented in 
Appendix E. This scheme provides the eigenenergies 
corresponding to the potential surfaces computer here and 
is used here to gauge the errors in potential in physically 
important regions and complement the results from eq D1. 
The absolute error in eigenenergies is 

E EE 
ref.Δϵ = | −  |α α 

{ }  
α 

β 
(D2) 

where again E .
α
{ } β and E ref 

α are α-th eigenenergies as 
previously defined for the eigenstates. 

■ APPENDIX E

Computing Eigenstates for the High-Dimensional Case 
Using Arnoldi Decomposition 
To obtain the eigenstates ({ψi}) and their eigenenergies 
({Ei}) used in eqs D1 and D2 for computing the ground-
state weighted potential energy surface errors and the errors 
in eigenenergies, we form the Hamiltonian matrix corre-
sponding to the multidimensional quantum nuclear degrees 
of freedom in the coordinate representation using a uniform 
grid basis, {xi}, as 

H K E x( )x x  
i

N 

x x, 
1 

, ,i i i i 9 .∑̂ = ̂ + ̅′ 
= 

′ { }β 
(E1) 

where the potential energy E x( ),9 .  ̅{ }β 
is that introduced in eq 

9 in the paper and x̅ = (x1, x2, ..., xi, ..., xN). The kinetic 
energy operator along each dimension, Kx x,i i  

̂ ′, is represented 
using distributed approximating functionals (DAFs)200−202 as 

K 
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(E2) 

where H2n+2 denotes the even-order Hermite polynomials. 
The DAF approach has been well reviewed in the 
literature.200,201 Thus, we only present a brief summary of 
the salient features in DAF representation in Appendix E. 
Given the form of the multidimensional quantum nuclear 

Hamiltonian in eq E1, the Arnoldi scheme requires repeated 
action of a function of the Hamiltonian f(Ĥ) on some 
random (or preconditioned) initial state which yields a 
Krylov basis, {|χi⟩:|χi⟩ = f(Ĥ|χi−1⟩}. It is known

190 that such a 
basis when used to represent the Hamiltonian yields a 
tridiagonal (for Hermitian matrices) or an upper Heisenberg 
(for non-Hermitian matrices), each of which quickly provides 
the exterior eigenstates of the original matrix. Due to the 
banded-Toeplitz nature of the kinetic energy operator in eq 
E2, the repeated action of the Hamiltonian can be performed 
in an extremely efficient manner, as discussed in ref 203. 

“Distributed Approximating Functional” (DAF) Represen-
tation for the Kinetic Energy Operator (Eq E2). The starting 
point is to expand a quantum wave packet, which is a 
function of the nuclear degrees of freedom, at time t = 0
using a local set of symmetric fitting functions, a(x − xi), 
such that 

x t  x a x  x x t( ; 0) ( ) ( ; 0) 
i 

i i i∑χ χ= = Δ − = 
(E3) 

where Δxi is the grid spacing (not, in general, uniform). The 
functions a(x − xi) are local fitting functions, the choice for 
which may, in general, depend upon the point xi. One of the 
most common directions at this point is to assume that a(x 
− xi) ≡ δ(x − xi) ≡ ⟨x|xi⟩ is a suitable approximation to the 
Dirac δ function. Subsequent resolution of the identity in 
terms of some complete set of basis functions leads to a 
representation of the wave packet in that basis. The DAF 
approximation differs from these approaches by assuming that 
a suitable  local representation200,204 can be directly 
constructed for a(x − xi), that is 

a x x a x  x

b H  
x x x x 

( ) ( ; ) 

2
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2

i N i 
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n n
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(E4) 

where Hn(x) denotes the Hermite polynomials generated 
from Gaussian according to 

H y y 
y 

y( )exp ( 1)
d

d
expn 

n 
n 

n[− ] = − [− ] 
(E5) 

Note that eq E4 is different from the expression obtained 
using a standard basis set approximation for a(x − xi) 
wherein the appropriate expression would be 

a x x x  x  

c x H x x H x

( ) ( ) 

exp /2 ( ) exp /2 ( ) 

i i 

n 
n n i n i 

2 2∑ 

δ− ≡ − 

= { [− ] }{ [− ] } 

(E6) 

with c n( 2 )n 
n 1π = ! − . Note that eq E6 is separable in x and 

xi, whereas eq E4 only depends on (x − xi). The local 
spectral205 form in eq E4 has many computational advantages 
not the least of which is the fact that eq E4 yields a banded-
Toeplitz matrix at any level of approximation. The choice of 
Hermite functions here is by no means a requirement; it is 
however a convenient choice. Using the orthogonality of the 
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Hermite functions and the fact that a(x − xi) must be 
symmetric with respect to interchange of x and xi (since it 
approximates the Dirac δ function), one obtains 

b

b
n
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n
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y
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= − 
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(E7) 

where we have used the identity206 

y y H y H y md exp  ( )  ( ) 2n m n m 
m2

,∫ δ π[− ] ≡ ! 
(E8) 

thus resulting in eq E2. The variables M and σ determine the 
accuracy and width (or computational efficiency), respec-
tively, of the DAF. It has been shown26,200,207 that these 
parameters are not independent, and for a given value of M, 
there exists a σ that provides optimal accuracy for the 
propagation. The accuracy of this method in conjunction 
with ab initio dynamics has been benchmarked in ref 26. For 
an approximation controlled by the choice of parameters M 
and σ, eq E2 only depends on the quantity (x − x′), that is, 
the distance between points in the coordinate representation, 
and goes to zero as this quantity becomes numerically large 
due to the Gaussian prefactor. This yields a banded matrix 
approximation to eq E2 for any M and σ. Furthermore, on 
account of its dependence on (x − x′), a matrix 
representation of eq E2 has the property that all diagonal 
elements of this matrix are equal; similarly, all n-th super 
(and sub) diagonal elements are the same. Such a matrix is 
called a Toeplitz matrix. The dependence on (x − x′) also 
implies a translational symmetry reminiscent of wavelet 
theories. 208−211 

We finally note that the DAF approach differs from other 
approaches that use Hermite functions to represent the wave 
packet212,213 based on Heller’s Gaussian wave packet 
formalism.214 Within these formalisms,212,213 a locally  
harmonic approximation to the potential214 allows the 
reduction of the time-dependent Schrödinger equation to 
classical-like equations to propagate the width and center of 
the Gaussian wave packets. In our case, no assumption is 
made on the nature of the potential. 
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