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ABSTRACT: The accurate computational determination of 
chemical, materials, biological, and atmospheric properties has a 
critical impact on a wide range of health and environmental 
problems, but is deeply limited by the computational scaling of 
quantum mechanical methods. The complexity of quantum 
chemical studies arises from the steep algebraic scaling of electron 
correlation methods and the exponential scaling in studying nuclear 
dynamics and molecular flexibility. To date, efforts to apply 
quantum hardware to such quantum chemistry problems have 
focused primarily on electron correlation. Here, we provide a 
framework that allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators. 
Using the example case of a short-strong hydrogen-bonded system, we construct the Hamiltonian for the nuclear degrees of freedom 
on a single Born−Oppenheimer surface and show how it can be transformed to a generalized Ising model Hamiltonian. We then 
demonstrate a method to determine the local fields and spin−spin couplings needed to identically match the molecular and spin-
lattice Hamiltonians. We describe a protocol to determine the on-site and intersite coupling parameters of this Ising Hamiltonian 
from the Born−Oppenheimer potential and nuclear kinetic energy operator. Our approach represents a paradigm shift in the 
methods used to study quantum nuclear dynamics, opening the possibility to solve both electronic structure and nuclear dynamics 
problems using quantum computing systems. 

I. INTRODUCTION 

The quantum mechanical treatment of electrons and nuclei is 
critical for a wide range of problems that are of significance to 
biological, materials, and atmospheric studies. For example, 
hydrogen transfer processes are ubiquitous in reactions critical 
to human health, alternative energy sources, food security, and 
environmental remediation.1 Yet, the detailed treatment of 
such problems is confounded by the presence of nontrivial 
quantum nuclear effects, such as hydrogen tunneling,2−6 

coupled with electron correlation.7 For the study of electron 
correlation in most molecular systems, several powerful 
approximations have been developed for classical computing 
platforms, and these are known to provide significant 
speedups compared to exponentially scaling full-configuration 
interaction calculations. Indeed, chemical accuracy may be 
obtained for many systems using the well-known CCSD(T) 
method8 that has an associated scaling cost of N( )6 76 − , 
where N represents the number of electrons. 
More recently, algorithms to solve electron correlation 

problems in small molecular systems have been implemented 
on quantum hardware devices using trapped atomic ions, 
photons, nuclear spins, quantum dots, Rydberg atoms, and 
superconducting circuits.9−20 The mapping of most electron 
correlation problems to quantum hardware is facilitated by the 

Jordan−Wigner, parity, or Bravyi−Kitaev transforma-
tions,21−23 where a product of Fermionic creation and 
annihilation operators are transformed to a chain of Pauli 
spin operators. 
In contrast, the intrinsic spin statistics of quantum nuclear 

dynamics problems, arising from the permutation symmetries 
of the wavefunctions that describe the constituent nuclear 
degrees of freedom, do not play a role under conditions 
prevalent in biological, materials, and atmospheric systems, 
such as hydrogen transfer reactions under ambient conditions. 
As a result, most such quantum dynamics studies are currently 
constructed on classical computing platforms using basis sets 
and on grids. Furthermore, many of these problems are known 
to display anomalous nuclear quantum effects2,24,25 that are 
challenging to study on classical hardware due to the 
exponentially scaling computational cost of quantum dynamics 
with increasing degrees of freedom. Unlike several recent 
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attempts on the electron correlation problem, 9−20,26−30 

approximating quantum nuclear dynamics problems on 
quantum computing platforms has received relatively less 
attention. 31−37 

The primary goal of this paper is to develop a set of 
mapping protocols to allow the study of quantum nuclear 
dynamics problems on quantum hardware that do not require 
considering spin statistics. We provide and analyze an 
approximate algorithm to map exponentially scaling quantum 
nuclear dynamics problems on a single Born−Oppenheimer 
surface, onto a general class of Ising model Hamiltonians. 
Such Ising-type Hamiltonians may be implemented on a range 
of quantum computing platforms, such as ion traps, 38−42 

superconducting coils,43 Bosonic processors with pho-
tons,44−46 solid-state devices and quantum dots inside 
cavities, 47−50 and Rydberg atoms. 51,52 Since quantum nuclear 
dynamics problems under ambient conditions do not need to 
be encoded using a set of Fermionic or Bosonic operators, we 
do not write the Ising model and molecular Hamiltonians in 
their respective second quantized forms. Instead, we first 
probe the structure of the Ising Hamiltonian matrix in its 
exponential scaling space of spin basis vectors. This 
exponential space is admittedly intractable. Yet, our analysis 
of the Ising Hamiltonian matrix reveals an intrinsic structure 
where specific blocks appear within the Ising Hamiltonian 
matrix, and the corresponding matrix elements are only 
controlled by a subset of the externally controlled field 
parameters that dictate the dynamics of the model. To the 
best of our knowledge, such a structure has never been noted, 
or exploited, before in the literature. This structure allows us 
to characterize the general class of problems that may be 
“computable” using such hardware systems, and in this paper, 
we further inspect the extent to which quantum chemical 
dynamics studies may be conducted on such systems, when 
the statistics of particle permutation need not be included. 
The most significant features of the mapping algorithm are 

summarized in Figure 1, with a more detailed illustration 

provided in Figure 2. An example of a quantum nuclear 
problem is shown in Figure 2a and also in Figure 1 (left). 
Here, we depict a system containing a short-strong hydrogen 
bond with anharmonic vibrational behavior along the donor− 
acceptor axis.  This problem is prototypical and is  
representative of a broad range of systems that occur during 
hydrogen transfer reactions2 and in hydrogen-bonded systems 
that are known to have significance in many critical 
processes.1 We precompute the Born−Oppenheimer potential 
using electronic structure calculations and obtain a discrete 
version of the quantum nuclear Hamiltonian. To map this 

Hamiltonian onto a spin-lattice Ising-type model, the key 
insights in this paper are as follows: (i) A projected subspace 
of a specific unitary transformation of the diagonal elements of 
the quantum nuclear Hamiltonian (related to the Born− 
Oppenheimer potential) maps to and defines the local 
magnetic fields applied on each lattice site of an Ising 
model Hamiltonian. (ii) A similarly projected subspace of a 
related unitary transformation of the off-diagonal elements of 
the quantum nuclear Hamiltonian (related to the nuclear 
kinetic energy operator) defines and is mapped onto the 
intersite coupling terms in the Ising model. These features of 
our map are highlighted in Figure 1. Importantly, we do not 
use a quantum circuit model. Instead, the matrix elements of 
the nuclear Hamiltonian that describe the molecular 
dynamics, inform the choice of local magnetic fields applied 
on each lattice site and laser pulse intensities that dictate the 
intersite coupling, and govern the dynamics of the ion-trap 
quantum computing platform. In this manner, we provide a 
direct map of the two quantum systems. Thus, we take a 
critical step toward solving quantum nuclear dynamics 
problems, and more generally problems that may not obey 
Fermi statistics, by mapping them to Ising-type Hamiltonians 
realizable on ion-trap quantum hardware. 
This paper is organized as follows: In Section II, we inspect 

the block structure of the Ising Hamiltonian, which informs 
the general class of problems that may be computable on 
hardware architectures used to realize such Ising-type 
Hamiltonians. Following this, we then introduce the quantum 
nuclear Hamiltonian matrix on a single Born−Oppenheimer 
surface in Section III and a class of Givens rotation53-based 
matrix transformations in Section III.I to represent the 
quantum nuclear Hamiltonian matrix in a form that is 
commensurate with the transformed form of the Ising model 
Hamiltonian in Section II. This transformation leads to our 
approximate mapping protocol that is outlined in Section IV. 
Numerical results for the anharmonic molecular vibrations of 
the shared proton in a symmetric short-strong hydrogen-
bonded system are provided in Section V. These include 
explicit numerical propagation of both the molecular dynamics 
problem and the spin-lattice dynamics governed by Ising-type 
Hamiltonian, where the Ising Hamiltonian parameters are 
chosen based on the mapping protocol in Section IV. The 
results match exactly for the case of three qubits, and error 
estimates beyond three qubits are given in Section IV. 
Conclusions are given in Section VI. Technical aspects of the 
discussion are further supported through a set of appendices. 

II. BLOCK STRUCTURE OF ISING-TYPE 
HAMILTONIAN MATRICES OBTAINED FROM 
APPROPRIATE CLASSIFICATION OF THE 
COMPUTATIONAL BASIS 

Ising-type Hamiltonians can be implemented on a range of 
available quantum computing platforms,38,39,43−52 which 
makes these one of the most commonly used quantum 
computing models today.39,54 However, for specificity, we will 
illustrate our mapping protocols for ion-trap-based quantum 
architectures, where ions form defect-free arrangements and 
can support quantum coherence times longer than 10 min.55 

Interactions between ions map to interactions between 
effective quantum spin states and quantum-harmonic-oscil-
lator bath stateseach of which can be precisely controlled 
and programmed using laser light.56 Site-resolved detection of 

Figure 1. Critical features of our mapping algorithm. The Born− 
Oppenheimer potential as well as kinetic energy portions of the 
molecular Hamiltonian are mapped to control parameters {{Bi

z}; 
{Jij

x , Jij
y, Jij

z}} of an Ising-type spin-lattice simulator. 
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each ion’s spin state can be achieved with near-unit fidelity.57 

These features have made trapped ions the leading platform 
for establishing atomic frequency standards58 and one of the 
leading candidates for performing quantum simulations and 
quantum computations on such interacting spin sys-
tems. 39,59−64 

For ion-trap quantum hardware, the generalized Ising 
Hamiltonian is represented by a spin-lattice of qubits, where 
(a) the energy gap between the states at each qubit, i, and 
their relative orientations, are controlled by local effective 
magnetic fields, {Bi 

x, Bi 
y, Bi 

z}, and (b) the spin−spin coupling 
between different lattice sites, i and j, is controlled using laser 
pulses, also spatially nonisotropic, and represented as 
{Jij

x , Jij
y, Jij

z}. Thus, the most general Hamiltonian achievable 
within the ion trap quantum hardware at low temperatures is 

J B IT 
i

N 

j i  

N 

ij i j  
i

N 

i i  
1 

1 

1 

/ ∑ ∑ ∑ ∑ ∑σ σ  σ= + 
γ 

γ γ γ  

γ 

γ γ 

= 

−

> = (1) 

where γ ∈ ( x , y , z) and N is the number of qubits (or ion 
sites). The quantities { σi 

γ} are the Pauli spin operators acting 
on the ith lattice site along the γ-direction of the Bloch sphere. 
It is critical to note that the expression above is more general 
than that commonly used in condensed matter physics and 
quantum chemistry, where only nearest-neighbor interactions 
are considered. In fact, the set of programmable Ising-type 
Hamiltonians on an ion trap quantum computer depicts a 
complete graph that connects all qubits in a spin-lattice system 
with programmable interactions.65 This aspect is completely 
captured in eq 1. Furthermore, a critical aspect that 
differentiates a quantum computer evolving according to eq 
1 from a quantum simulator is one where the quantum 
computer can precisely address and control all {Jij 

γ} values, 
whereas a quantum simulator programs a single functional 
dependence involving a {Jij 

γ}, thus resulting in a reduced set of 
controllable parameters. 39,65,66 

In this paper, we map the Born−Oppenheimer nuclear 
Hamiltonian to eq 1, thus allowing the two quantum systems 
to undergo analogous quantum dynamics. Toward this, the 
parameters {B i 

γ ; J ij 
γ } are “ programmed ” as per the elements of 

the classically determined Born−Oppenheimer nuclear Ham-
iltonian matrix. To arrive at such a map, we first examine the 
intrinsic symmetries that are present within such generalized 
Ising Hamiltonians. 
The ion-trap Hamiltonian, IT/ , is naturally represented in a 

b a s i s  o f  2N sp in  s t a t e s ,  where ,  f o r  e xample ,  
, , , { ↑↑ ↑↓ ↓↑ ↓↓ } form a basis for a two-qubit system. 

These now provide us with a “computational basis” with 
programmable handles, {B i 

γ; Jij
γ }. To gauge the set of mappable

problems, we introduce a general set of permutations on the 
computational basis vectors to reveal a novel block structure 
of the Ising Hamiltonian matrix. Specifically, the 2N spin states 
are partitioned into two sets that are created by the span of 
even and odd total spin raising operators. Toward this, the 
basis vectors created using an even number of lattice-site spin 
raising operators {Si

+} acting on the full down-spin state, 

2 1 11 , N − ≡ ··· ≡ ↓↓ ··· y i e l d  t h e  s e t  ;{ ↓↓ ··· 
S S ;i j ↓↓ ···⟩ + +  S S S S  ;i j k l ↓↓ ···⟩ ···} + +  + +  that is grouped as 

part of one block of the ion-trap Hamiltonian. See the set of 
vectors in Figure 3b, and the bottom left row of Figure 4, 
where this idea is illustrated for a three-qubit system. For the 
notation in this paper, we have used the binary representation 
11 ··· for spin state ↓↓ ··· and the corresponding integer 

representation 2 1 N − obtained from the bit-sequence 
encoded in 11 . ··· 
Similarly, the states obtained using an odd number of 

raising  operators  S S S S; ;i i j k{ ↓↓ ···⟩ ↓↓ ···⟩ ···}+ + + + are  

grouped into a second block and are shown in Figure 3a 
and on the bottom right row of Figure 4. 

Figure 2. Algorithm that converts the Born−Oppenheimer potential surface and kinetic energy terms in a quantum nuclear problem to a set of 
controllable parameters and facilitates the dynamical evolution of quantum states in an ion trap. Box (a) shows the Born−Oppenheimer potential 
and kinetic energies for a short-strong hydrogen-bonded system. This system Hamiltonian is mapped onto an ion trap quantum simulator shown 
in box (b). Discrete representation of the nuclear Hamiltonian and appropriate rotations yield ion-trap parameters {{Bi

z}; {Jij
x, Jij

y, Jij
z}} to determine 

the Ising model used to control the dynamics of lattice spin states. Also see Figure 1. 
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Thus, the two sets independently span S
n 2

{ ↓↓ ···⟩} + and 

S , 
n2 1 

{ ↓↓ ···⟩}+ −
where S+ is the total spin raising operator. 

When the spin basis vectors are partitioned in this manner, 
the Ising Hamiltonian in eq 1 separates into the block 
structure that is illustrated in Figure 4 for a three-qubit 
system. Specifically, the matrix that determines the time 
evolution of the hardware system separates into two diagonal 
blocks that can only be coupled by turning on {Bi

x; Bi
y}, and 

this is shown in Figure 4 as part of the gray square. Thus, 
eliminating these {Bi

x; Bi
y} fields would yield two separate 

diagonal blocks allowing the treatment of systems that may 
have a similar block structure. Similarly, the off-diagonal 
matrix elements within each diagonal block are determined by 
the laser field parameters, {Jij

x; Jij
y}. While the structure derived 

here is completely general, it is illustrated in Figure 4 for a 
three-qubit system. The diagonal elements of the matrix, not 
shown in Figure 4 to maintain clarity, contain linear 
combinations of {Bi

z; Jij
z}. 

For a larger number of qubits, the block structure has a 
recursive form, and this aspect is further elaborated in 
Appendix A. This block form of the Ising-type Hamiltonian 
and the associated structure in Figure 4 are a significant 
general result in this paper, and as we find below, this analysis 
is critical toward mapping arbitrary problems. 

III. GRID-BASED QUANTUM NUCLEAR 
HAMILTONIAN COMPUTED ON CLASSICAL 
HARDWARE 

The quantum nuclear Hamiltonian for the molecular system, 
Mol / , is constructed on classical hardware, for the purpose of 

this paper. In the coordinate representation with basis 
elements, {|x⟩}, the Hamiltonian matrix elements are given by 

x x K x x V x x x( ,  )  ( ) (  )Mol/ δ⟨ ′⟩ = ′ + − ′ (2) 

For local potentials, the potential energy operator, V̂, is  
diagonal in the coordinate representation. The expression in 

Figure 3. 2N spin (computational) basis states partitioned into (a) 
the span of odd powers of the total spin raising operator acting on 

the down-spin state S
n2 1 

{ ↓↓ ···⟩} + −
and (b) the span of even powers 

of the total spin raising operator acting on the down-spin state 

S . 
n 2

{ ↓↓ ···⟩}+ This partitioning is illustrated here for the case of three 
qubits and leads to a block form of HIT as illustrated in Figure 4. 

Figure 4. Upper triangular part (excluding the diagonal) of the Ising Hamiltonian, IT / (eq 1), in the permuted computational basis illustrated for 
a three-qubit system. Spin (computational) basis state kets, along with their corresponding binary and integer representations, are presented at the 

base of the figure. These states are partitioned into odd, S , 
n2 1 

{ ↓↓ ···⟩}+ −
and even, S , 

n 2
{ ↓↓ ···⟩}+ spans of the total spin raising operators. The 

interaction between any two states, |i⟩ and |j⟩, is the ijth matrix element of the ion trap Hamiltonian. For example, J JIT 
x y 

13 13/⟨↑↓↑ ↓↓↓⟩ ≡ [ − ]. 

The off-diagonal block that couples the vectors obtained from the odd, S , 
n2 1 

{ ↓↓ ···⟩}+ −
and even, S , 

n 2
{ ↓↓ ···⟩}+ spans of the total spin raising 

operators are marked by the gray square. 
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eq 2 yields a continuous representation, and in practice, the 
matrix and the corresponding vectors that the matrix acts on 
are represented on a discretized Cartesian grid. In this case, 
the Dirac delta function above is replaced by the Kronecker 
delta. The potential energy in the above equation is obtained 
from electronic structure calculations that may also be 
performed on quantum hardware, independently, in future. 
The kinetic energy operator may be approximated in a 

number of ways. One approach is to recognize that this 
operator is diagonal in the momentum representation, and 
hence fast Fourier transforms are commonly employed.67 In 
this paper, we employ an analytic banded Toeplitz distributed 
approximating functional (DAF)68,69 representation for the 
grid representation of the kinetic energy operator in eq 2 

K x x K x  x  
m 

x x 

n 
H 

x x 

( , )  ( )
4 2

exp 
( )

2

1 

4 

1 

2n

M n 

n 

2 

3 

2 

2 

0 

/2 

2 2 

DAF 

l 
m 
oo 

n 
oo 

|
}oo 

~ 
oo 

i 

k
jjj 

y
{
zzz 

i 

k
jjj 

y
{
zzz∑ 

σ π σ 

σ 

′ =  |  −  ′|  =  
−ℏ − 

− ′  

− 

! 
− ′  

= 
+ 

(3) 

The banded Toeplitz representation of the DAF approx-
imation for the kinetic energy operator, where the property of 
its matrix elements, Kij ≡ K(|i − j |), has a critical role in 
reducing the nuclear Hamiltonian to the form of IT/ , 
depicted in Figure 4. This is further elaborated in the 

following section. In eq 3, ( )H n
x x  

2 2 2 σ+ 
− ′  are the even-order 

Hermite polynomials that only depend on the spread 
separating the grid basis vectors, |x⟩ and |x′⟩, and MDAF and 
σ are parameters that together determine the accuracy and 
efficiency of the resultant approximate kinetic energy operator. 
Appendix D provides a brief summary of the DAF approach 
for approximating a function in general. 
III.I. Unitary Transformations That Yield the Block 

Structure of the Nuclear Hamiltonian, for Symmetric 
Potentials, to Make These Commensurate with and 
Mappable to the Spin-Lattice Hamiltonian, IT/ . The 

nuclear Hamiltonian, Mol / from eq 2, has a banded Toeplitz 
structure due to the kinetic energy being expressed in terms of 
DAFs. In general, the Hamiltonian in eq 2 represents a 
multidimensional quantum dynamics problem, where the 
number of dimensions directly corresponds to the number of 
nuclear degrees of freedom. In this paper, we examine the 
map between the Hamiltonian in eq 2 for symmetric one-
dimensional potentials and the Ising model Hamiltonian 
discussed in Section II. Routes from here to unsymmetric 
potentials and to problems in higher dimensions will be 
considered as part of future publications. In the proton 
transfer problem considered here, the one-dimensional 
potential energy surface along the hydrogen transfer axis, 
V(x) in  eq 2, is a symmetric double well owing to the 
isoenergetic donor and acceptor sites arising from the 
symmetry of the system (Figure 2a). We exploit the 
symmetric structure of the potential and the Toeplitz structure 
of the kinetic energy operator to construct a unitary 
transformation that block-diagonalizes the nuclear Hamilto-
nian. 
The unitary transform that leads to the block diagonaliza-

tion of the nuclear Hamiltonian, similar to the structure of the 
Ising Hamiltonian, can be expressed as a product of Givens 
rotations. The effect of the Givens rotations on the grid basis 
states is to create superposition states of the symmetric grid 

basis states. To explain this, we introduce a uniform one-
dimensional set of 2N grid points, x , i { } such that the Givens-
transformed grid basis, x , i{ ̃ } may be represented as 

x x x i n 

x x n i n 

1 

2 
, 0 ( 1)/2 (4) 

1 

2 
, ( 1)/2 (5) 

i i n i 

i n i 

̃ ⟩ ≡  [ ⟩ +  ⟩]  ≤ < +  

≡ [ ⟩ − ⟩] + ≤ ≤

− 

− 

where n = 2N − 1. The grid basis and the Givens-transformed 
grid basis, for a three-qubit system, are represented on the left 
columns of Figure 5. Equations 4 and 5 form two mutually 

orthogonal subspaces and are represented in the top and 
bottom portions of Figure 5, separated by the dashed line. 
These subspaces diagonalize the nuclear Hamiltonian for 
symmetric potentials. This process is illustrated for a three-
qubit system (23-grid points) in Figure 6. 
The ilth matrix element of the resultant molecular 

Hamiltonian in the Givens-transformed grid basis is explicitly 
written as 

1 

2 
( )il  i l  l  i n l i  n i l  i l  n i n l  

Mol 
,

Mol 
,

Mol 
,

Mol 
,

Mol/ / / / /α α α α̃ = + + +− − − −

(6) 

where αi = sgn[i − (n/2)]. The elements of the diagonal 

blocks of 
Mol /̃ (matrix on the right in Figure 6) are obtained 

from eq 6 as 

Figure 5. Illustration of the mapping of the Givens-transformed grid 
basis state representation, x ̃ (eq 5), for the discrete quantum 
nuclear Hamiltonian to the permuted computational basis state 
representation, λ ̃ (Section II), for the Ising model Hamiltonian. 
The respective basis states map shown here for the case of three 
qubits holds true and can be generalized to an arbitrary number of 
qubits. The dashed line in the middle separates the two blocks of 
each Hamiltonian. 
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K x x  K x x V x  V x

1 
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( ) 
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il  i l  i  i n l i  n i l  n i n l  

i l i i n l i n l i l 

Mol 
,

Mol 
,

Mol 
,

Mol 
,

Mol 

,

/ / / / /α α

α δ 

̃ = + + + 

= [ +  ] +  [ +  ]

− − − −

− −

(7) 

The elements of the unitary transform, αi, are, in fact, the 
characters of the Cs point group. The right-hand side of the 
above equation, therefore, represents a symmetry-adapted 
transformation of the nuclear Hamiltonian, and the term 
(1/2) [V(xi) +  V(xn−i)] symmetrizes the potential energy 
surface in one dimension. By extension, for the elements of 

the off-diagonal blocks of 
Mol /̃ in Figure 6, αl = −αi and 

V x  V x

1 

2 
( ) 

1 

2 
( )  (  )

il  i l  i  i n l i  n i l  n i n l  

i n l i n l 

Mol 
,

Mol 
,

Mol 
,

Mol 
,

Mol 

,

/ / / / /α α

δ 

̃ = − + − 

= [ −  ]

− − − −

− − 

(8) 

where the kinetic energy contribution is identically zero purely 
due to the Toeplitz nature of eq 3, and only the antisymmetric 
portion of the potential, (1/2) [V(xi) −V(xn−l)], contributes 
to the antidiagonal part of 

Mol /̃ . Thus, for symmetric 
potentials such as those considered here, eq 8 is identically 
zero. This observation will become useful when we generalize 
the approach presented here, first to general potentials and 
then to problems of higher dimensionality in future 
publications. 

IV. MAPPING PROTOCOL FOR QUANTUM CHEMICAL 
DYNAMICS 

The structure of the ion-trap Hamiltonian constrains the class 
of mappable problems. These constraints dictate the accuracy 
with which quantum chemical dynamics simulations can be 
performed on an ion-trap system given by eq 1. To summarize 
our discussion thus far (see Figure 5), we began with a 
computational basis λ used to describe the Ising Hamil-
tonian, IT / in eq 1, and the grid basis x used to represent 

the quantum nuclear Hamiltonian, Mol / in eq 2. In the  
interest of matching the structures of the two Hamiltonians, 
we first obtained a permuted computational basis: λ λ→ ̃ 
(Section II, and also summarized on the right side of Figure 
5) and a unitary (Givens) transformed quantum nuclear basis: 
x x→ ̃ (Section III.I). In doing so, our goal becomes 

x x Mol 
IT/ /Ù Ù 

λ λ⟨ ̃ ′⟩ ↔ ⟨ ̃ ′⟩ (9) 

where we first introduce a map between the transformed 
quantum nuclear wavefunction bases and the permuted 
computational bases that represent the Ising spin-lattice 
system as 

x λ⟩̃ ⇔  ⟩̃ (10) 

This map is illustrated within the central box in Figure 5, 
where the left side of the central box represents the Givens-
transformed grid basis and the right side represents the 
permuted computational basis. Furthermore, the mapped basis 
states are separated into blocks by a dashed horizontal line. 
For the molecular Hamiltonian, the coupling across these 
blocks is identically zero for symmetric potentials, while for 
the Ising Hamiltonian, the coupling across these blocks is 
identically zero when the terms Bi

x and Bi
y are eliminated from 

eq 1 (see Figure 4). The effectiveness of the maps in eqs 9 
and 10 will essentially dictate the accuracy to which the 
dynamics captured within the ion-trap quantum simulator 
controlled by an Ising Hamiltonian accurately predicts the 
quantum nuclear dynamics. 
In this section, we will show that, due to the structure of the 

Hamiltonians discussed in the previous sections, the diagonal 
and off-diagonal elements of each individual diagonal block of 
mappable Hamiltonians, such as eq 2, are Hadamard-
transformed to provide {Bi

z; Jij
z} and {Jij

x; Jij
y}, respectively. As 

a consequence of the discussion in Section III.I, both  
Hamiltonians, eqs 1 and 2, by construction, take the form 
depicted in Figure 2c and the right side of Figure 6, 
respectively. Our quantum nuclear dynamics test case that will 
be mapped to the aforementioned Ising Hamiltonian (Section 

Figure 6. Illustration of the block diagonalization of the nuclear Hamiltonian, as captured by eq 6. (Left) Original Hamiltonian, Mol/ ; (right) 

transformed 
Mol /̃ . On the right side, specific matrix elements from each block of il

Mol /̃ are highlighted to illustrate eqs 7 and 8. These 

highlighted elements of il
Mol /̃ are obtained by combining elements of Mol / , as per eq 6, and these are marked using red and blue squares in 

zoomed-in representations of matrix elements in Mol / . Blue (negative) and red (positive) indicate the phase of the corresponding elements of 
Mol / , as obtained from αi in eqs 6−8. 
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V) exploits the block structure discussed above, and we 
illustrate the map by studying a symmetric hydrogen-bonded 
system displayed in Figure 2a, where a symmetric double-well 
potential is also shown. For these cases, as seen from eqs 8 
and 7 and the discussion in Section II and eq A4 in Appendix 
A, the block structure of both the Hamiltonian matrices allows 
the two blocks of each Hamiltonian matrix (Ising and 
molecular) to be propagated independently, and, potentially 
on different quantum simulators, for the Ising Hamiltonian. 
We exploit this feature to evaluate a separate set of {Bi 

z; Jij
γ} 

values, below, for each of the two diagonal blocks of the 
molecular Hamiltonian, while maintaining {Bi

x; Bi
y} to be  

identically zero. 
IV.I. Obtaining Ion-Trap Parameters {Bi

z; Jij
z} from the 

Diagonal Elements of the Molecular Hamiltonian. The 
diagonal elements of the molecular Hamiltonian are directly 
mapped to those of the spin-lattice Hamiltonian after invoking 
the map of the unitary-transformed grid basis x( ) ̃ to the 
permuted computational basis ( )λ ̃ . Each diagonal element of 
the molecular Hamiltonian in the transformed grid repre-
sentation x xMol /⟨ ̃ ̃ ⟩ is equivalent to the corresponding 
element of the ion-trap Hamiltonian IT/λ λ⟨ ̃ ̃ ⟩ in the 
permuted computational basis representation. In doing so, 
the set of on-site and intersite coupling parameters {Bi

z; Jij
z} of  

the ion-trap that occur along the diagonal of IT /̃ can be 
evaluated. The mapping expression between the diagonal 
elements of the molecular Hamiltonian and the corresponding 
elements of the ion-trap Hamiltonian may be written as 

x x IT 
Mol/ /λ λ⟨ ̃ ⟩̃ ≡ ⟨  ̃ ⟩̃ (11) 

Using eq 7 and eq 1, for the left and right sides of eq 11, we  
obtain 

K x x  K x x  V x  V x

B J i n 

( ,  )  ( ,  )
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( )  ( )

( 1) ( 1)  for  /2  

i i i n i i n i 
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j j k∑ ∑ ∑ 

[ − ] + [ + ] 

= − + − <λ λ λ

− −

=
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(12) 
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= − + − > λ λ λ 

− −

=
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̃ ⊕ ̃ 

(13) 

where ⊕ on the right side denotes the addition modulo 2 and 
λ̃j is the jth bit of the bit representation of λ ̃ with values 0 or 
1 for up- or down-spin, respectively, as shown in Figure 3 and 
Figure 4. 

Our goal is to use the diagonal elements of 
Mol /̃ to obtain 

ion-trap parameters {Bi
z,Jij

z}. The expressions needed for this 
purpose are derived from eqs 12 and 13, and a detailed 
discussion on this map is provided in Appendix B. In  
summary, we show in Appendix B that the ion-trap control 
parameters {Bi

z; Jij
z} are specific Hadamard transforms of 

x xMol /⟨ ̃ ̃ ⟩, that is 

x x B J;i 
z 

ij 
zMol Hadamard/⟨ ̃ ⟩̃ ⎯  →⎯⎯⎯⎯⎯⎯⎯⎯ { } (14) 

This is a particularly key result in this paper, since the 
Hadamard transforms, like Fourier transforms,70 are unitary 
and hence the ion-trap parameters, {Bi

z; Jij
z}, are Walsh− 

Hadamard-transform71 components of x xMol /⟨ ̃ ̃ ⟩. However, 
while this map is general for arbitrary number of qubits, we 
will also describe in Appendix B that the linear trans-
formations between x x Mol/⟨ ̃ ̃ ⟩ and {Bi

z; Jij
z}, in eqs 11, 12 and 

13, are rank-deficient and hence error estimates are also 
presented in Appendix B that apply for arbitrary number of 
qubits. 
Before we conclude this section, we note that the map in 

eqs 12 and 13 may be used for the potential-free particle in a 
box case by eliminating the potential leading to 

K x x K x x B  
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V. PERFORMANCE OF THE MAPPING PROTOCOL 
FOR A SYMMETRIC HYDROGEN-BONDED SYSTEM 

We examine the map by simulating the quantum dynamics of 
the molecular system and the ion-trap dynamics, on classical 
hardware, independently. In doing so, we study the time 
evolution of the initial wavepacket states prepared in the 
respective permuted basis representations for the molecular 
and Ising model Hamiltonians. As stated, the parameters in 
the Ising Hamiltonian are determined, and thus controlled, by 
the precomputed matrix elements of the molecular Hamil-
tonian. The specific intramolecular proton transfer problem 
considered here is  that in the protonated 1,8-bis-
(dimethylamino) naphthalene (DMANH+) system shown in 
Figure 7a. The DMAN molecule has an extremely large 
proton affinity of 242 kcal/mol,72 with DMANH+ pKa value in 
the range of 12.1−12.3.73 As a result, the system is one of the 
most frequently investigated proton sponges. The NHN+ 

hydrogen bond in proton sponges is attractive from the 
point of view of both the nature of the short potentially 
symmetric hydrogen-bond bridges,74−77 their infrared spectro-
scopic behavior, and their propensity to occur in common 
nitrogen activation catalysts.78,79 Thus, the DMANH+ system 
has been frequently studied as a model for short, low-barrier 
hydrogen bonds that have a role in certain enzyme-catalyzed 
reactions. In solution, the shared proton delocalization in 
DMANH+ is controlled by a low-barrier symmetric double-
well potential, with barrier height being influenced by solvent 
and temperature.80,81 In fact, the environment and variables 
such as solvent and temperature influence the donor−acceptor 
distance fluctuations, thus having a critical role in the 
quantum mechanical nature of the shared proton. The effect 
of these donor−acceptor variables is seen in Figure 7b, where 
we present the shared proton one-dimensional symmetric 
potentials (red curves on the right side of Figure 7b) for a 
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range of donor−acceptor distances (left vertical axis in Figure 
7b) with significant classical Boltzmann populations (black 
horizontally placed histograms in Figure 7b) at room 
temperature. Clearly, the barrier heights separating the 
minima in the red curves as well as respective minimum-
energy positions are sensitive to donor−acceptor fluctuations 
and influence the spectroscopic properties of such hydrogen-
bonded systems.82,83 To emphasize this, in Figure 7b, the light 
gray vertical lines are positioned to approximately coincide 
with the minimum-energy values for the red potential energy 
surface at an NN distance of 2.83 Å. As the NN distance gets 
smaller, the minimum-energy points get closer to each other 
and changes the nature of the confinement potential in the 
shared hydrogen nucleus. Here, the effects of all of these 
aspects are studied by mapping the quantum nuclear dynamics 
problem on multiple potential surfaces, obtained from 
different donor−acceptor (NN) distances, to ion-trap 
quantum simulators. 
In the following subsections, we present the methods used 

to classically precompute the nuclear Hamiltonian for each of 
the donor−acceptor distances shown in Figure 7b and  
simulate the quantum nuclear dynamics on these potentials 

using the Ising model-based ion-trap simulators. We treat the 
shared proton stretch dimension within the Born−Oppen-
heimer limit. The nuclear Hamiltonian is determined by the 
ground electronic-state potential energy surface. 

V.I. Precomputing the Molecular Hamiltonian ( Mol /
in Equation 2) on Classical Hardware. To compute the 
potential energy surface for the intramolecular proton transfer 
in the molecular system DMANH+ (Figures 2a and 7a), we 
locate a symmetric stationary point with the shared proton at 
the center of the donor−acceptor axis. For the case of 
DMANH+, this stationary point turns out to be a transition 
state with one imaginary frequency that is obtained from the 
eigenstates of the electronic structure Hessian matrix, with the 
vibrational mode corresponding to the intramolecular proton 
transfer direction. At this geometry, the shared proton is 
symmetrically located between the donor and acceptor 
nitrogen atoms. These calculations are performed using 
standard electronic structure methods. The level of electronic 
structure theory used is density functional theory with hybrid 
functional, B3LYP, and an atom-centered Gaussian basis set 
containing polarization and diffuse functions on all atoms, that 
is, 6-311++G(d,p). Future work will also include mapping of 
this Hamiltonian precomputation step onto quantum 
hardware. A reduced dimensional potential energy surface 
calculation for one-dimensional proton motion along the 
donor−acceptor axis is performed at the aforementioned 
stationary point geometry. This is also done for a set of 
donor−acceptor distances with significant classical Boltzmann 
populations as seen in Figure 7b. The potential energy 
surfaces are obtained on a grid defined along the donor− 
acceptor axis. We choose 2N number of equally spaced grid 
points, symmetrically located about the grid center, and 
perform electronic structure calculations at these points, on a 
classical computing platform, at the level of theory mentioned 
above. The molecular Hamiltonian is computed (eq 2) and 
unitary-transformed to achieve a block structure according to 
Section III.I. 

V.II. Quantum Simulation of Proton Transfer 
Dynamics. Given the block structure of both molecular 
and Ising Hamiltonians in the permuted and Givens-
transformed basis representations, the initial wavepacket for 
the ion-trap system is chosen as a coherent linear combination 

of the spin basis states: 
2{ }↑↑↑⟩ + ↓↓↓⟩ on a three-qubit system. 

Given the block structure of the Ising Hamiltonian with 
{Bi

x, Bi
y} turned off, the components of this initial state, ↑↑↑⟩ 

and , ↓↓↓⟩ are not coupled. Additionally, these states will not 
couple as might be the case in the presence of B3

x − iB3
y in the 

off-diagonal blocks: for example, pathways such as 

B iB J Jx y x y 
3 3 12 12 ↓↓↓⟩ ⎯ →⎯⎯⎯⎯⎯⎯ ↑↓↓⟩ ⎯ →⎯⎯⎯⎯⎯ ↑↑↑⟩ 

− −

will remain unpopulated. Hence, in essence, ↑↑↑⟩ gets 
propagated as per the unitary evolution corresponding to 
the top diagonal block of the Ising Hamiltonian and ↓↓↓⟩ as 
per the bottom block. This critical feature allows us to treat 
the two separated blocks as arising from two different ion 
traps with two di ff erent sets of {B i 

γ ; J ij 
γ} parameters. Given the

direct map in eq 10 between the permuted computational 
basis and the Givens-transformed molecular grid basis, the 
initial wavepacket for the molecular system is to be chosen in 
an analogous manner to the initial wavepacket of the ion-trap, 

Figure 7. (a) Molecular geometry for DMANH+ with the shared 
proton potential surface shown in red. The quantum mechanical 
nature of the shared proton allows it to be simultaneously present in 
both wells, and here, we use eq 1 to simulate the behavior of this 
shared proton throughout mapping protocol in eq 9. (b) Change in 
double-well potential (and barrier height) as a function of donor− 
acceptor (N−N) distance. The bar heights show the classical 
Boltzmann population for each N−N distance. 
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which is 
x x

2 
0 7{ }̃ ⟩ +  ̃ ⟩ 

. This essentially leads to the initial 

wavepacket for the quantum nuclear dynamics problem as 
being chosen on one end of the grid, that is, a state localized 
closer to one of the nitrogen atoms in Figures 2a and 7a. This 
choice results in the initial nuclear wavepacket being 
symmetrically located at either end of the Givens-transformed 
basis (eq 5). The spin-lattice and molecular wavepackets are 
then independently propagated for each potential obtained for 
different donor−acceptor separations and compared to gauge 
accuracy of the quantum simulation. 
Given the recursive form of the matrix representation of the 

Ising Hamiltonian in eq 1, as discussed in Appendix A (see eq 
A4), the ion-trap hardware initial wavepacket state is directly 
propagated by the choice of {B i 

γ; J ij 
γ } for arbitrary time 

segments. In this study, we do not seek experimental 
validation using a real ion-trap simulator but emulate the 
time evolution of the ion-trap system according to the 
Hamiltonian in eq 1 on classical hardware, using the 
eigenstates of the Ising Hamiltonian in Appendix A. The 
time-dependent probabilities resulting from the projection of 
the resultant time-dependent wavepacket on the computa-
tional basis, at each interval of time, is shown using dashed 
lines in Figures 8 and 9 for a donor−acceptor distance of 

2.53 Å and for the full set of donor−acceptor distance values 
in Figure 10. (The donor−acceptor distance of 2.53 Å 
corresponds to the most stable structure, but as seen from 
Figure 10, there are several other geometries that are also 
populated (at 300K) even from a purely classical Boltzmann 
estimation.) Similarly, we determine the time evolution of the 
initial wavepacket for the molecular system using the 

eigenstates of the transformed Hamiltonian in eq 6, and the 
resulting probabilities from the projection of the time-
dependent wavepacket on the Givens-transformed grid basis 

x{ ̃ } are shown using solid lines in Figures 8−10. The 
probabilities match exactly, apart from numerical round-off 
error (10−15), for the quantum simulation of the dynamics of 
the two systems. Clearly, this is also true for much longer time 
intervals as can be seen in Figure 9. Given the exact match 
between the spin-lattice dynamics and the quantum chemical 
dynamics, the features present in ion-trap dynamics must also 
exist in the chemical dynamics problem. Thus, through the 
isomorphism constructed above, our algorithm shows the 
ability to probe any entanglement that may be present in 
chemical systems. 

VI. CONCLUSIONS AND OUTLOOK 
The successful simulation of quantum nuclear dynamics on 
quantum hardware promises a new paradigm for studying a 

Figure 8. Dynamics of the molecular and the ion trap systems: The 
integer (i) depicts the projection of a propagated state onto the ith 
permuted spin basis state and the corresponding Givens-transformed 
grid basis state for the ion-trap (dashed) and the molecular system 
with dDA = 2.53 Å (solid), respectively. Note that all propagations are 
conducted on classical platforms. The agreement of the quantum 
dynamics in both systems is exact to within numerical round-off 
(10−15). The two rows in the figure legend represent the two sets 
spanned by odd and even spin raising operators, {S+}, acting on the 
↓↓ ···⟩ spin state (dashed) and their corresponding Givens-
transformed grid basis states (solid) according to eq 10. An extended 
set of dDA is shown in Figure 10, and results for a longer-term 
dynamics for the most stable structure (dDA = 2.53 Å) are provided 
in Figure 9. 

Figure 9. Dynamics of the molecular system (solid) and the ion-trap 
system (dashed) that show their exact match to within numerical 
round-off (10−15) over long simulation times sufficient to capture the 
molecular vibrational properties. Complements Figure 8. The  
projection of the respective time-dependent wavepackets onto basis 
vectors within each of the two decoupled blocks is shown separately 
for clarity. 
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broader class of coupled electron nuclear transfer problems. In 
this study, we provide a general but approximate mapping 
procedure between a quantum chemical dynamics problem, 
constructed on a single Born−Oppenheimer surface, and an 
ion-trap quantum simulator where the dynamics is dictated by 
a generalized form of the Ising model Hamiltonian. The key 
step involved in facilitating our map is the partitioning of the 
coupled qubit space into two zones using only odd or even 
powers of the total spin raising operators that are used to 
generate such a coupled qubit space. Once the coupled qubit 

computational basis set is partitioned in such a way, the Ising 
model Hamiltonian reduces into a block form, thus allowing 
the possibility to map all problems that may be written in a 
similar block form. In some sense, we have also taken here the 
necessary steps to detail the kinds of general problems that 
can be solved exactly on a quantum system whose dynamics is 
dictated by a generalized form of the Ising model 
Hamiltonian. In this particular paper, though, we consider a 
symmetric proton transfer problem and then go on to show 
how such a problem can be mapped to an ion-trap system and 

Figure 10. Similar to Figure 8 but for multiple donor−acceptor distances (dDA) between the nitrogen atoms for the molecule in Figure 2a. 
Boltzmann populations (ρB) are computed at 300 K relative to the population of the configuration used in Figure 8 that has a dDA value of 2.53 Å. 
The correlated changes in the |0⟩ and |7⟩ projections are clearly facilitated by components along other basis vectors, and these may have a critical 
role in the reactive process as a function of temperature. The fact that the ion-lattice dynamics displays the same dynamical trends provides an 
additional probe to complex chemical systems. 
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also show that the dynamics of the two systems is identical 
provided the parameters of the ion trap are chosen in concert 
with that of the molecular system obtained from classical 
precomputation. We also provide error bounds for this 
approximate algorithm for arbitrary number of qubits. 

General quantum nuclear dynamics problems, however, 
have unsymmetric potential energy surfaces and are generally 
performed in higher dimensions. This work will become 
critical in extending our mapping protocol to general 
potentials in higher dimensions, as will be considered in 

Figure 11. Complements Figure 4. At the base of each figure are the computational basis state kets. The interaction between any two states ( )iλ ̃ 

and ( )jλ ̃ can be read off from the graph, by starting at the two states and following the lines to their intersection. The node at the intersection 

gives the interaction between the two. For example, |2⟩ and |7⟩ in (c) have an off-diagonal matrix element of [J13
x − J13

y ]. The blank nodes are zero 
and show the block diagonal form of the Ising Hamiltonian when {Bi

x; Bi
y} are set to zero. 
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future publications. In addition, the next set of steps also 
includes inspection of nuclear wavepacket basis set depend-
ence on the accuracy of the proposed map. Using appropriate 
basis sets, it may be possible to reduce the number of 
independent descriptors within the molecular Hamiltonian, 
thus tailoring the accuracy of the map according to the 
constraints provided in this paper. 

■ APPENDIX A: RECURSIVE, BLOCK STRUCTURE OF 
THE ISING HAMILTONIAN MATRIX 

The Ising Hamiltonian matrix, HN, for a spin-lattice system 
with N qubit sites, when written in the computational basis 

partitioned according to sets that span S
n 2

{ ↓↓ ···⟩} + and 

S , 
n2 1 

{ ↓↓ ···⟩}+ −
may be recursively written in a blocked form 

as 

H
H B

B H
N 

N
D1 

N 

N N
D2 

Ä 

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ 

É 

Ö 

ÑÑÑÑÑÑÑÑÑÑÑÑ 
= 

†
(A1) 

Here, both the diagonal blocks HN 
D1 and HN 

D2 , and the off-
diagonal block BN are recursively defined as per 

where I2N denotes an identity matrix of size 2N. The quantities 
Jxy, N 
1 and Jxy, N 

2 are matrices that appear in the recursive 
definition of the diagonal blocks, labeled with superscripts D1 
and D2, respectively, and contain intersite coupling of the Nth 
spin site with the remaining N − 1 sites. To arrive at the 
matrix elements belonging to λ ̃ Jxy, N 

1 λ̃′ and λ ̃ Jxy, N 
2 λ̃′ in 

the equation above, a bitwise XOR operation is constructed 
between the corresponding computational bases, |λ̃⟩ and |λ̃′⟩. 
The XOR operation provides the identity of the spin sites 
where the computational basis vectors λ ̃ and λ̃′ differ, that 
is, when the spin states are flipped between λ ̃ and . λ̃′ When 
the bases differ at two spin-lattice site locations, i and j, the 
corresponding matrix element of Jxy, N 

1 or Jxy, N 
2 is given by 

Jij
x±Jij

y. The phase preceding the Jij 
y values results from an 

XNOR operation on the i, j lattice sites discovered through 
the XOR operation above. 
The terms, Jz,N 

1 and Jz,N
2 , in  eq A2 are also defined in a 

similar manner. Both Jz,N 
1 and Jz,N 

2 matrices are diagonal in 
form. Thus, the diagonal elements of HN 

D1 and HN 
D2 are 

incremented by a linear combination of all possible intersite 
couplings of the Nth spin site with the remaining N − 1 sites 

given by J( 1)i
N

iN 
z

1 
1 i N∑ − λ λ

=
− ̃ ⊕ ̃ 

. (Also see eqs 12 and 13.) 
As noted in the paper, setting all of the transverse local 

qubit magnetic fields, Bi
x, and Bi

y values to zero in eq 1 block-
diagonalizes eq A2 and may be recursively written as 
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(A3) 

At this stage, it is critical to realize that the two blocks in 
the equation above are completely decoupled and basis vector 
components that undergo unitary evolution due to the top 
block are never influenced by elements from the bottom block 
and vice versa. This is explicitly elaborated in Figure 11 for 
the case of two and three qubits. This presents us with an 
additional degree of flexibility for our quantum simulation. We 
exercise this flexibility here and map separately the top and 
bottom blocks of the equation above, to two different N-qubit 
ion trap systems controlled by parameters {Bi

z Jij
γ} and {B̃ 

i
z J ̃ ijγ}, 

respectively. It is important to note here that while the 
underlying structure of each block in the Ising Hamiltonian 
matrix remains the same, two different sets of ion-trap control 
parameters are used to simulate the top and bottom blocks, 
respectively, thus providing greater flexibility in simulating real 
systems. We, therefore, introduce a subtle change in denoting 
the corresponding Ising model Hamiltonian as N / and allow 
the diagonal blocks to be independently determined in the 
following manner 
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(A4) 

where the top block is controlled by parameters {Bi
z; J ij 

γ } and 
the bottom block is controlled by a different set of ion-trap 
parameters {B̃ 

i 
z J ̃ ij γ}. The molecular Hamiltonian is mapped to 

the above form of the Ising model Hamiltonian matrix. 
We now illustrate the above form of Ising Hamiltonian for 

the two- and three-qubit systems. But we note that the 

aforementioned basis set partitioning and Hamiltonian 
structure is completely general and applies to all cases. 
Explicitly written, for the case of two qubits, eq A4 takes the 
form 
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(A5) 

where again we have highlighted the distinction between ion-
trap simulators that represent the top block, {B i 

z Jij 
γ}, and those 

that control the bottom block, {B ̃ i z J ̃ ij γ}. The three-qubit 

Hamiltonian is then recursively obtained from the two-qubit 
Hamiltonian as prescribed by eq A4 and may be written in 
compact form as follows 
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(A6) 

Here, H2 
D1 and H2 

D2, as defined for the general case in eq A4, 
refer to the top and bottom diagonal blocks of the two-qubit 
Ising Hamiltonian (eq A5) simulated using the ion-trap 
parameters {Bi 

z J ij
γ} while H̃ 

2 
D1 and H̃ 

2 
D2 refer to the top and 

bottom blocks of the two-qubit Ising Hamiltonian (eq A5)
controlled by {B̃ 

i 
z J ̃ ij γ}. While most of H 2 

D1 and H2 
D2 is preserved 

and appear as diagonal blocks of the two-qubit Hamiltonian, 
the Nth qubit on-site term B3 

z and intersite coupling terms 
with all N − 1 qubits J13

z , J23 
z with appropriate phases are 

added to each diagonal element. The quantities Jxy,3 
1 and Jxy, 3 

2 

in the top block and J ̃ xy,3 
1 and J ̃ xy,3 

2 in the bottom block capture 
the interaction of qubits 1 and 2 with qubit 3 in the form of 
the intersite coupling terms for the two ion traps, respectively. 
Explicitly, the three-qubit system Hamiltonian becomes 

H H3
D1 

3
D2 

3/ = ⊕ ̃ (A7a) 

where, for compactness, we have written the ion-trap 
Hamiltonian as a direct sum of 
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We further clarify that the top block, H3 
D1 , is controlled by 

parameters {Bi 
z Jij

γ}, whereas the bottom block, H̃ 
3 
D1 , is  

controlled by {B̃i 
z J ̃ ijγ}. 

■ APPENDIX B: OBTAINING THE ION-TRAP 
CONTROL PARAMETERS {BI

Z; JIJ
Z} FROM 

EQUATIONS 12 AND 13 

The goal of eqs 12 and 13 is to compute the values for 
{Bi

z; Jij 
z}, given the values on the left side of eqs 12 and 13. It  

must first be noted that both equations are a linear set of 
equations, but the number of free parameters available on the 
right side, that is, the number of ion-trap control variables 
within the set {Bi

z; Jij
z}, is {N + N(N − 1)/2} or {N(N+1) /2}. 

(In Appendix C, the number of parameters that control the 
ion-trap is analyzed.) On the contrary, given that the two 
blocks of the molecular Hamiltonian are to be propagated 
independently, as outlined in Appendix A, eq A4, and also in 
Section IV, the number of free parameters on the left sides of 
eqs 12 and 13 are 2 1N n 1 1 

2
{ − }  =  − − . This quantity is 

obtained by realizing that each block contains 2N−1 diagonal 
elements that arise from the Givens transform of the potential 
energy surface and of the nuclear kinetic energy, as seen from 
eqs 12 and 13. But the dynamics is invariant to any shift to 
the potential energy surface, and thus, eliminating the average 
value of the diagonal elements of the molecular Hamiltonian 
yields a reduction of the number of free parameters in the 
diagonal elements of the molecular Hamiltonian leading to the 
quantity n 1

2 

− . 

Thus, in general, the number of ion-trap control parameters 
{Bi

z; Jij
z}, in eqs 12 and 13, is not always equal to the number 

of independent control variables that arise from the molecular 
Hamiltonian. In this section, we present the best case solution 
to the set {Bi

z; Jij
z} for an arbitrary N, given the diagonal 

elements of the Givens-transformed molecular Hamiltonian. 
Furthermore, we are also in a position to provide error 
bounds for the case of an arbitrary number of qubits as we do 
later in this section. 
To appropriately invert eqs 12 and 13 and to determine a 

suitable set of {Bi
z; Jij

z} values, we first rewrite these equations 
to expose the fact that the ion-trap control parameters {Bi

z; Jij
z} 

are specific Hadamard transforms of x x Mol/⟨ ̃ ̃ ⟩ as stated in 
eq 14. To achieve this, we treat all parameters in {Bi

z; Jij
z} on  

an equal footing and assign these to a new set of variables 
{Bi

z; Jij
z} ≡ Dl

z, where the index “l” runs over all integer values 
less than or equal to 

BJ N N 
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jjj

y
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(B1) 

as is clear from the above discussion. We, thus, write the 
mapping expression for the diagonal elements, from eqs 12 
and 13 as 
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where {λ̃} corresponds to either of the two sets of 
permuted computational basis states (see Figure 3) that 

independently span S
n2

{ ↓↓ ···⟩} + or S
n2 1 

{ ↓↓ ···⟩} + − 

and Tλ̃,l 

represents a coefficient matrix for the phase preceding the 
corresponding Dl

z in the equations above. The upper limit, 
BJmin 

z , to the summation in eqs B2 and B3 thus denotes the 
maximum number of independent parameters in {Bj 

z; Jjk
z } that 

will be used to encode the diagonal part of 
Mol /̃ for a given 

number of qubits. Thus, the diagonal elements of the 
transformed Ising Hamiltonian IT /λ λ⟨ ̃ ̃ ⟩ encode both the 
Givens-transformed Born−Oppenheimer potential energy 
surface, V(x), and the nuclear kinetic energy that appear 
due to the block diagonalization process, needed to make the 
two Hamiltonians have the same structure (see eqs 7, 12, and 
13). The columns of the transformation matrix on the right 
side of eqs B2 and B3, with elements, Tλ̃,l = ±1, resemble a 
subset of columns that span an N − 1-dimensional Hadamard 
matrix, which is an (N − 1)th-order tensor product of the 
standard 2×2 (or one-qubit) Hadamard transform. Thus, the 
columns of T in eqs B2 and B3 form an orthonormal set and 
thus the {Bj 

z; Jjk
z } values represent a rotation of the elements in 

x xMol /⟨ ̃ ̃ ⟩. 

D T 
1 

2l 
z 

N l1 , IT/∑ λ λ= ⟨ ̃ ⟩̃
λ 

λ− 
{ }̃

̃ 
(B4) 

Owing to the equivalence of x x Mol/⟨ ̃ ̃ ⟩ and IT /λ λ⟨ ̃ ̃ ⟩, as  
seen in eqs 9 and B4, we use the precomputed diagonal 
elements of the unitary-transformed molecular Hamiltonian in 
eq B4 to obtain the on-site parameters of the ion trap. As per 
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eq 11, IT/λ λ⟨ ̃ ̃ ⟩ may be replaced by x xMol /⟨ ̃ ̃ ⟩ in eq B4 
leading to 
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(B5) 

where we tersely assume the summation over {λ̃} to also 
correspond to the summation over {x̃} as allowed by the 
correspondence in eq 10. Furthermore, since the N-qubit-
Hadamard transform is unitary, we have simply transposed the 
elements of the transformation matrix, T, in writing eq B5. 
For example, for the three-qubit case studied here, the tensor 
product of two Hadamard matrices yields 
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Hence, the transformation matrix in eq B5 is obtained from eq 
B6, by removing the zero-frequency component (first row) 
leading to 

T
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1 1 1 1
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− −  
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The first row of eq B6 is the average of the diagonal elements 

of the molecular Hamiltonian and, as noted at the top of this 

section, the diagonal elements, x xMol /⟨ ̃ ⟩̃, are shifted so that 
this average value is zero. This uniform shift of the diagonal 

elements results in a constant shift between the eigenvalues of 

the molecular Hamiltonian and the Ising Hamiltonian, which 

results in no change to the dynamics, as is clear from Figures 

8−10. 
The transformation matrix in eq B5, that is, TT, is also 

illustrated in Figure 12b,c for the 24-dimensional sub-blocks of 

a five-qubit Ising and for the 22-dimensional sub-blocks of a 

three-qubit Ising Hamiltonian in Figure 12a. The dimension 

2N N N1 ( 1) 

2 
× − + of the T matrix is apparent from this figure. 

The latter dimension of the T matrix that depends on the 

number of independent Dl 
z values is at most N N( 1) 

2 

+ (or BJmin
z ) 

and is found to be 3 for the three-qubit system and 15 for the 

five-qubit system. While the figure is only presented for three-

qubit and five-qubit systems, the transformation is completely 

general. 

Figure 12. Transformation from x xMol/⟨ ̃ ̃ ⟩ to the Bz-values for three qubits (a) and Bz (b) and Jz-values (c) for five qubits. This inverse matrix 
picks out the appropriate columns from the 2N−1-dimensional Hadamard transformation matrix. See eqs 11 and B5. The Bz transformations (a, b) 
arise from two basic vectors (top and bottom). The vector in the bottom panel is scaled in frequency to create the other vectors. This aspect is 
shown using two different color shades. Similarly, Jz transformations (c) arise from five basic transformations arranged with different color shades 
in panels 1-3, 4-5, 6-7, 8-9, and 10. 
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■ ERROR BOUNDS ON MAPPING
x xMol 

IT/ /λ λ⟨ ̃ ⟩̃ ↔ ⟨ ̃ ̃ ⟩ FOR A LARGER NUMBER 
OF QUBITS 

Arising from the above discussion, the error, ϵ, associated with 
such a partial Hadamard transform of the diagonal elements of 
the molecular  Hamiltonian, can  be obtained from the
orthogonal complements of the transformation matrix in the 
corresponding Hadamard matrix. This can be expressed in a 
closed form as 

P 
1 

2
(N 

T T
1 Diag 

Mol 
Diag 
Mol/ /ϵ = [  ̃ ] [ ̃ ]− 

⊥ 

(B8) 

where Diag 
Mol /̃ contains the diagonal elements of 

Mol/̃ , that is, 

x x Mol/⟨ ̃ ⟩̃, in the equations above and PT⊥ is a projector on 
to the orthogonal complement of transformation matrix T 
(depicted in Figure 12 for three and five qubits) as obtained 
from the Hadamard matrix. 

H HP TT

I TT

2

2

N N N T T 

N T 

T 1 ( 1) ( 1) 

1 
2 N( 1)

≡ − 

= − 

− ⊗ − ⊗ − 

− 

⊥ 

− (B9) 

where the quantity H⊗(N−1) is the (N − 1)th-order tensor 
product of the standard 2 × 2 (or one-qubit) Hadamard 
transform. Thus, cases where the diagonal part of the 
molecular Hamiltonian is exactly captured within the subspace 
represented by eq B5 may be exactly modeled using the ion-
trap simulator/computer. In all of these cases, the orthogonal 
complement in eq B8 is identically zero. In the general case, 
the problem becomes that of suitably representing the 
diagonal elements of the molecular Hamiltonian within the 
subspace of Hadamard transforms represented by TT. 

■ APPENDIX C: NUMBER OF DEGREES OF
CONTROL IN THE ISING HAMILTONIAN,
EQUATION 1

For a given number of qubits, N, the number of ion-trap 
handles in eq 1 that control various sectors of the 
Hamiltonian matrix scale as 

N N N N N N N( 1)/2 ( 1) 2 ( )26{ +  −  } + { − } + { } →  
(C1) 

Here, the first quantity, {N + N(N − 1) /2}, refers to the 
parameters, {Bi

z; Jij
z}, that control the diagonal elements of the 

matrix (actively discussed in Appendix B), the second quantity 
on the left, {N(N − 1)}, refers to the parameters, {Jij 

x ± Jij
y}, 

that control the coupling between the basis vectors inside each 
block, and {2N} refers to the parameters, B Bi

x 
i 
y{ ± }, that 

control the coupling across the sets of basis vectors created 
using the odd and even raising operators described above. 
This characterization not only elucidates the degrees of 
freedom of the Ising model Hamiltonian in eq 1 but also 
provides the sectored availability of these control parameters. 
At this stage, there are two cases that become interesting 

insofar as mapping to realistic systems is concerned. In the 
first case, the structure of the Ising Hamiltonian is used as is, 
including the B Bi

x 
i 
y{ ± } terms, and the number of degrees of 

freedom is as given above and must match the same for the 
problem at hand to produce an exact map. For the second 
case, if the B Bi

x 
i 
y{ ± } handles are eliminated, the system 

reduces to two separate blocks that may be propagated 

independently, perhaps even on two different sets of ion-trap 
architectures arranged in parallel, or Trotterized on one single 
ion-trap architecture. It is this second case that we consider in 
this paper as it allows the ability to have different Ising model 
parameters for the two diagonal blocks, and in this case, the 
number of ion-trap handles become 

N N N N N2 ( 1)/2 ( 1){ +  −  + − } (C2) 

which is, in fact, greater than the number of Ising model 
handles available in an (N − 1)-qubit system when N< 17. 
The above discussion also implies that for Hamiltonians 
containing 2N independent terms, only approximate compu-
tation is possible. In this sense, the current paper takes a first 
step toward providing the necessary accuracy bounds in 
Appendix B. 

■ APPENDIX D: THE “DISTRIBUTED
APPROXIMATING FUNCTIONAL” (DAF)
REPRESENTATION FOR THE KINETIC ENERGY
OPERATOR (EQUATION 3)

The DAF approach has been well reviewed in the 
literature.68,69 But given the significance of the banded 
Toeplitz form toward the mapping algorithm, where as seen 
in eq 8, the contributions to the off-diagonal blocks from the 
kinetic energy go to zero due to the banded Toeplitz 
representation, we present a brief summary of the DAF 
representation here. The starting point is to expand the 
wavepacket at time t = 0 using a local set of symmetric fitting 
functions, a(x − xi), such that 

x t  x a x  x  x  t( ; 0) ( ) ( ; 0) 
i 

i i i∑χ χ= = Δ − = 
(D1) 

where Δxi is the grid spacing (not in general uniform). The 
functions a(x − xi) are local fitting functions, the choice for 
which may, in general, depend upon the point xi. One of the 
most common directions at this point is to assume that 
a(x − xi) ≡ δ(x − xi) ≡ x xi is a suitable approximation to 
the Dirac delta function. Subsequent resolution of the identity 
in terms of some complete set of basis functions leads to a 
representation of the wavepacket in that basis. The DAF 
approximation differs from these approaches by assuming that 
a suitable local representation69,84 can be directly constructed 
for a(x − xi), that is 

a x x a x  x
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(D2) 

where Hn(x) are the Hermite polynomials generated from 
Gaussians according to 

H y y 
y 

y( )  exp (  1)
d

d
expn 

n 
n 

n[− ] = − [− ] 
(D3) 

Note that eq D2 is different from the expression obtained 
using a standard basis set approximation for a(x − xi), 
wherein the appropriate expression would be 
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with c n( 2 )n 
n 1π = ! − . Note that eq D4 is separable in x and 

xi, whereas eq D2 only depends on (x − xi). The local 
spectral85 form in eq D2 has many computational advantages 
not the least of which is the fact that eq D2 yields a banded 
Toeplitz matrix at any level of approximation. The choice of 
Hermite functions here is by no means a requirement; it is 
however a convenient choice. Using the orthogonality of the 
Hermite functions and the fact that a(x − xi) must be 
symmetric with respect to interchange of x and xi (since it 
approximates the Dirac delta function), one obtains 
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where we have used the identity86 

y y H y H y md exp  ( )  ( ) 2n m n m 
m2 

,∫ δ π[− ] ≡ ! 
(D6) 

thus resulting in eq 3. The variables M and σ determine the 
accuracy and width (or computational efficiency), respectively, 
of the DAF. It has been shown69,87,88 that these parameters 
are not independent, and for a given value of M, there exists a 
σ that provides optimal accuracy for the propagation. The 
accuracy of this method in conjunction with ab initio 
dynamics has been benchmarked in ref 88. For  an  
approximation controlled by choice of parameters M and σ, 
eq 3 only depends on the quantity (x − x′), that is, distance 
between points in the coordinate representation, and goes to 
zero as this quantity becomes numerically large due to the 
Gaussian prefactor. This yields a banded matrix approximation 
to eq 3, for any M and σ. Furthermore, on account of its 
dependence on (x − x′), a matrix representation of eq 3 has 
the property that all diagonal elements of this matrix are 
equal; similarly, all n-th super (and sub)diagonal elements are 
the same. Such a matrix is called a Toeplitz matrix. The 
dependence on (x − x′) also implies a translational symmetry 
reminiscent of wavelet theories. 89−92 

We finally note that the DAF approach differs from other 
approaches that use Hermite functions to represent the 
wavepacket93,94 based on Heller’s Gaussian wavepacket 
formalism.95 Within these formalisms,93,94 a locally harmonic 
approximation to the potential95 allows the reduction of the 
time-dependent Schrödinger equation to classical-like equa-
tions to propagate the width and center of the Gaussian 
wavepackets. In our case, no assumption is made on the 
nature of the potential. 
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