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ABSTRACT: Molecular fragmentation methods have revolutionized quantum chemistry. 
Here, we use a graph-theoretically generated molecular fragmentation method, to obtain 
accurate and efficient representations for multidimensional potential energy surfaces and 
the quantum time-evolution operator, which plays a critical role in quantum chemical 
dynamics. In doing so, we find that the graph-theoretic fragmentation approach naturally 
reduces the potential portion of the time-evolution operator into a tensor network that 
contains a stream of coupled lower-dimensional propagation steps to potentially achieve 
quantum dynamics with reduced complexity. Furthermore, the fragmentation approach 
used here has previously been shown to allow accurate and efficient computation of post-
Hartree−Fock electronic potential energy surfaces, which in many cases has been shown 
to be at density functional theory cost. Thus, by combining the advantages of molecular 
fragmentation with the tensor network formalism, the approach yields an on-the-fly 
quantum dynamics scheme where both the electronic potential calculation and nuclear 
propagation portion are enormously simplified through a single stroke. The method is demonstrated by computing approximations 
to the propagator and to potential surfaces for a set of coupled nuclear dimensions within a protonated water wire problem 
exhibiting the Grotthuss mechanism of proton transport. In all cases, our approach has been shown to reduce the complexity of 
representing the quantum propagator, and by extension action of the propagator on an initial wavepacket, by several orders, with 
minimal loss in accuracy. 

1. INTRODUCTION 

The quantum mechanical treatment of electrons and nuclei is 
critical for a wide range of problems of interest in biological, 
materials, and atmospheric systems.1 For example, hydrogen 
transfer processes and hydrogen bonded systems are ubiq-
uitous,2,3 but the detailed study of such processes is confounded 
by the presence of non-trivial quantum nuclear effects, such as 
hydrogen tunneling,1,4−9 coupled with electron correlation.10 

For the study of electron correlation in most molecular 
systems, chemical accuracy may be obtained using the well-
known CCSD(T) method11 with an associated computational 
cost that scales as N( )7 , where N represents the number of 
electronic basis functions. The quantum dynamical treatment of 
nuclei, however, is thought to be exponentially complex.12−15 As 
a result, the accurate study of quantum nuclear dynamics is 
complicated by the following challenges: (a) The computational 
cost associated with obtaining accurate electronic potential 
energy surfaces needed to define the dynamics is complicated by 
the fact that the number of configurations needed to depict the 
surfaces may grow exponentially with the number of quantum 
nuclear dimensions.16−21 (b) The storage of the operators such 
as the quantum propagator and the wavepackets also may grow 
exponentially with dimensions,22−25 and finally, (c) the action of 
the quantum propagator on a wavepacket, that is, the actual 

quantum dynamics step, also may require a set of operations that 
grow exponentially with the number of dimensions.14,15,24,26 

Associated with these challenges, multiple quantum computing 
platforms have been recently developed and may provide an 
approach toward the efficient treatment of the quantum nuclear 
dynamics27−34 and electronic structure. 35−45 

Despite progress, critical challenges remain. For quantum 
nuclear dynamics, one complication that multidimensional 
problems21,46−48 present is that the potential energy surface is 
entangled across dimensions. To address this issue, in this 
publication, we present a quantum propagation strategy that 
utilizes our recently developed graph-theoretic approach to 
molecular fragmentation as a means to provide the potential 
surface46,49−57 and associated description of quantum prop-
agation. This approach allows us to decouple the multidimen-
sional quantum nuclear representation into a family of lower-
dimensional quantum problems that may be streamed in 
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parallel. There appear deep connections between our strategy 
and other techniques that reduce quantum circuit depth through 
circuit decoupling approximations.58−62 

The paper is organized as follows: In Sections 2 and 3, we 
highlight our new approach which uses molecular fragmentation 
to create a quantum nuclear wavepacket propagation scheme to 
drastically reduce the complexity of quantum nuclear prop-
agation. The approach is benchmarked for a protonated water 
wire problem in Section 4. Conclusions are given in Section 5. 

Additional computational aspects are discussed in Appendix A 
and the Supporting Information. 

2. MOLECULAR FRAGMENTATION NATURALLY 
YIELDS A TENSOR NETWORK REPRESENTATION 
FOR QUANTUM PROPAGATION 

In refs 46, 49−57, 62, and 63, we have developed and 
demonstrated the utility of a graph theory-based molecular 
fragmentation64−84 approximation that is based on many-body 
expansions70,71,85−98 embedded within an our own n-layered 
integrated molecular orbital and molecular mechanics 
(ONIOM)69,99−103 scheme. We have used the approach to 
compute conservative Born−Oppenheimer49−51 and extended 
Lagrangian50,51 ab initio molecular dynamics (AIMD) trajecto-
ries at the accuracy of CCSD and MP2 levels of theory but at the 
computational cost of density functional theory (DFT). We 
have also presented condensed-phase electronic structure 
studies at hybrid DFT accuracy at the computational cost of 
pure DFT functions.56 We have demonstrated an adaptive, 
multi-topology-based molecular fragmentation approach for 
AIMD57 and multidimensional potential energy surface 
calculations.46,54 

The implementation of this methodology allows simultaneous 
use of Gaussian,104 ORCA,105 Psi4,106 Quantum Espresso,107 

and OpenMX108 within a single electronic structure, dynamics, 
and potential surface calculation. An efficient approach for 
quantum computation has also been derived from these 
methods,62 and machine-learning generalizations have also 
been presented in ref 63. In this section, we utilize the graph-
theory-based molecular fragmentation to provide an efficient 
representation for quantum nuclear dynamical propagation. 
2.1. Quantum Time-Evolution Operator Represented 

Using Potential Surfaces from Graph-Theory-Based 
Molecular Fragmentation. A molecular system56 is divided 
into a set of fragments. These fragments are treated as nodes 
within a graph. All nodes are then connected based upon a 
distance cut-off criterion, to form edges, and these edges help 
capture two-body interactions between the node fragments. The 
set of nodes, depicted as V0, and the set of edges, depicted as V1, 
are used to define a graph, . Higher-order local many-body 
interactions between the nodes are captured by considering 
contributions from a set of simplexes.109−113 Simplexes are 
defined as geometric objects with an arbitrary number of 
vertices, where all pairs of vertices are connected. These include 
fragments formed from triangles within the set depicted as V2 
which represents all faces within the graph, tetrahedral objects 
formed from four nodal fragments that reside within the set V3, 
and so on. 

For a given molecular geometry, R, influenced by 
ONIOM,99,102,103 the system energy at some low level of 
electronic structure theory, level, 0, with energy Elevel,0 , is
corrected using graph-theoretically generated46,52−57 many-

body expansions70,85−88,90,94−98 to arrive at the energy 
expression46,52−57 

= + 
=

E E ER R R( ) ( ) ( 1) ( )level 

r 

r 
r r r 
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This expression has been shown to serve well as an 
approximation to the energy at a higher level of electronic 
structure theory, level, 1. In eq 1, E R( ) , is the energy
associated with molecular geometry R using graphical 
decomposition . The quantity, , is the rank of the largest 
simplex included and captures the +( 1)-body interaction 
terms between the nodal fragments. The quantity Elevel,0(R) is 
the energy of the full system at “level, 0” electronic structure 
theory. Furthermore, ΔEα,r 

1,0(Rα,r) is the difference between “level, 
1” and “level, 0” electronic potential energies for the α-th (r + 1)-
body molecular fragment 

=E E ER R R( ) ( ) ( )r r r 
level 

r r 
level 
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,1 
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The fragments are determined from the graphical decom-
position, and the quantities Rα,r represent the geometry of the α-
th molecular fragment that is an (r + 1)-body term in the many-
body expansion. The quantity r, in eq 1 is a multiplicity term 
to prevent over-counting in the graph-theoretic expression and 
includes the number of times the α-th (r + 1)-body term appears 
in all fragments of the rank greater than or equal to r. The 
methodology for obtaining the graphs (and hence fragments 
that are denoted by the simplexes) is general and allows for 
treatment of non-uniform systems, based on the needed level of 
local many-body interactions. Although this graph-based 
fragmentation approach has been discussed in detail in refs 46, 
49−57, 62, and 63, in Appendix A, we present an illustration of 
how this is done for complex systems. The overarching goal of 
our study here is to take steps toward performing quantum 
nuclear dynamics simulations where the potential surface is 
determined as per eq 1 and its multi-topology general-
izations.46,54,57 

In quantum dynamics, a nuclear wavepacket is evolved in time 
using the quantum propagator which may be written through 
Trotter factorization114−118 as 

=

= + 

+ 

t 

e e 

e e e ( ) 

Ht K V t 

Vt Kt Vt 

/ ( ) / 

/2 / /2 3
(3) 

Here, K̂ and V̂ are the kinetic and the potential energy operators, 
respectively. In the coordinate representation, the kinetic energy 
operator is separable across multiple dimensions, which makes 
e−ıK̂t/ℏ a direct product of propagators pertaining to individual 
dimensions.20,119,120 The potential energy operator, on the other 
hand, is not in general separable across dimensions. This 
publication deals with efficient and accurate representations for 
e−ıV̂t/2ℏ and potential surfaces based on the graph-theoretic 
approach for molecular fragmentation presented in eq 1 and its 
multi-topology generalizations. We thus rewrite the diagonal 
elements of the potential energy portion of the time-evolution 
operator, that is, e−ıV̂t/2ℏ, in the nuclear position representation 
which is now represented using a family of geometries, {R}, 
represented on some multidimensional grid, using eq 1 to obtain 
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and 

=E ER R( ) ( 1) ( )r r 
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r r r, 
1,0 
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Note that the potential (V̂) and the potential propagator 
(exp{−ıV̂ t/2ℏ}) are diagonal in position representation, and 
hence, the off-diagonal elements, ⟨R′|exp{−ıV̂t/2ℏ}|R⟩, are 
identically 0. The quantity Rα,r contains a far fewer number of 
nuclear degrees of freedom as compared to the full system 
depicted by the geometry R. For example, if the many-body 
expansion is truncated at the two-body terms ( = 1 in eq 4), 
then any given Rα,r contains only those nuclear degrees of 
freedom within a fragment created from two-body interactions 
across nodal fragments. 

This dimensional reduction is central to our approach here 
and has commonalities with other methods such as high-
dimensional model representations,121,122 basis-pruning ap-
proaches,123−125 the POTFIT20,126 approach commonly used 
in multi-configuration time-dependent Hartree,126,127 and the 
molecular fragment surface approach from ref 128. The critical 
difference here is that our approach includes computing the 

Figure 1. Figure provides an hierarchical arrangement of the operations, {exp{−ı{ΔẼα,r
1,0 (Rα,r)}t/2ℏ}}, in eq 5 where each such operation only acts on a 

portion of the quantum system depicted by the variables {Rα,r}. For example, for the water wire system (bottom of the picture is represented as a graph 
shown in dark blue nodes and edges right above the water wire), the propagators, exp{−ı{ΔẼα,r

1,0 (Rα,r=0)}t/2ℏ}, act only on quantum nuclear degrees of 
freedom represented within the nodes, Rα,r=0. Similarly, the family of propagators, exp{−ı{ΔẼα,r

1,0 (Rα,r=1)}t/2ℏ}, act only on quantum nuclear degrees of 
freedom represented within the edge (r = 1) depicted within the boxes shown as Rα,r=1. There are a total of four edges (shown as purple rectangles) in 
the above-shown figure. For example, the edge propagators containing the first (from the left) and the second edge dimension (depicted as R0,1), the 
second and the third edge dimension (R1,1), and so on. 
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potential based on a full ab initio potential, obtained from 
molecular fragmentation. That is, the dimensional reduction in 
the action of e−ıV̂ t/2ℏ on a quantum nuclear wavepacket is 
entirely due to the factorization of the propagator as allowed by 
eq 1 and as is evident from eqs 4 and 5. In fact, Figure 1 is a 
tensor network that mimics the topology of the graph from eq 
1. Also see discussion in Appendix A. Note that there is no 
requirement on the tensor network22,25 representation for the 
wavepacket and for the potential propagator to be of a specific 
form (such as a matrix product state129), and in fact, the tensor 
network topology is dictated by the chosen molecular graph 
representation (also see Appendix A). 
2.2. Hierarchical, Quantum Circuit-like Decomposi-

tion from Eq 5. We now provide an analysis of the extent to 
which the above-mentioned formalism (massively) reduces the 
computational effort in quantum propagation when accurate 
potential energy values are computed on a multidimensional 
grid. Figure 1 complements our discussion (also see Appendix 
A). We begin by assuming nuclear dimensions that are to be 
treated quantum mechanically in the entire molecular system. 
These dimensions are then assumed to be roughly equally 
divided into the -nodes leading to / dimensions per node 
in a graph-theoretic fragmentation of the molecular structure. 
We further assume discretizations per quantum nuclear 
dimension. This discretization is illustrated in Figure 2, where 

the individual protons participating in a hydrogen-bonded chain 
in a water wire are labeled {R1, ..., R4} and are treated as a single 
multidimensional coupled quantum dynamical system. Each 
degree of freedom, for example, R1, is discretized as shown with 
dots in Figure 2, and here, we assume such discretizations per 
quantized nuclear dimension. This leads to a total of 
discretizations to define the entire potential energy surface, 
which is incidentally also the complexity of the general operation 

| |x x xe Vt/2 (7) 

Here, x is a multidimensional grid point in the aforementioned 
-dimensional space. That is, x represents one geometry 

within the -dimensional space that determines the entire 
potential energy surface. Each node approximately contains 

information pertaining to / grid points. In the discussion 
mentioned below, { }x x x x, , ...,1 2 where xi represents a 
grid discretization pertinent to the i-th node, the geometry for 
which is represented in eq 5 as Ri,0. For example, a node 
comprising the right-most hydronium in Figure 2 only contains 
the grid points representing R1. Hence, the nuclear geometry 
pertaining to such a node only includes the atoms that are within 
the fragment represented by the node. 

Before we demonstrate the power of the aforementioned 
methodology, we begin with a Tensor-network130 approxima-
tion to the initial wavepacket, ⟨x|χ⟩ ≡ χ(x), and more precisely, 
we start with a matrix product state approximation129 to χ(x). 
The bottom row of nodes shown in the orange color inside 
Figure 1 represents a general initial quantum nuclear wave-
packet, χ(x;t = 0), written as a matrix product state129−131 

= 
= 

x x x x( ) ( ) ( ) ( ) 
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j 
j 

1 
1
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,j j1 1 1 
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k
jjjjjjj 

y 
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zzzzzzz (8) 

where the so-called entanglement parameters 132−136 are 
{ ··· }, ,1 2 1 . Similarly, the functions 

[ { } ]= ···x x x( ); ( ) ; ( )j 
j j 

1 
1 , 2 1

j j1 1 1 (9) 

are lower-dimensional functions that depend on variables, xi, 
and span the nuclear dimensions embedded within each node 
separately. Diagrammatically, eq 8 is represented using the 
bottom row in Figure 1. Each orange-shaded circle in the bottom 
row represents a nodal dimension, as is clear from the notation, 
Rα,r=0, which is represented by the grid discretization, xα, in eq 8. 
The line connecting two such circles in the bottom row is the 
respective γi component of entanglement vector γ̅ in eq 8, and 
each vertical line is the grid dimension xα pertaining to each 
node. Thus, eq 8 is a multi-configurational wavefunction, with 
correlation between the reduced dimensions dictated by the 
matrix product state description in eq 8. Computational aspects 
on how to obtain eq 8 using a sequence of bipartite singular value 
decomposition steps are discussed in ref 22 and summarized in 
Section S1. 

We now illustrate the power of the propagation approach 
summarized using eqs 4 and 5 in stages. Our goal is to analyze 
the complexity of the operation, in eq 7, that is, 

= { } 

× { } 

x E x t 

i E x t x 

e ( ) exp ( ) /2 

exp ( ) /2 ( ) 

V x t level( ) /2 ,0 

(10) 

where we have used the fact that both Elevel,0 and E are 
functions of the full dimensional grid represented here as x, as 
given by eq 1. 

The action, [ { } ]i E x t xexp ( ) /2 ( ) , is represented in 
Figure 1, and we explain the process in detail here using eq 5. 
The matrix product state form of the wavepacket is acted upon 
by the sequence of propagators such as exp{−ıΔẼα,r=0

1,0 t/2ℏ} as 
shown in Figure 1. The action of the potential propagators for 
the node fragments, where r = 0, is represented by blue-colored 
circles in the second row from the bottom in Figure 1. Similarly, 
the action of the edge contributions, exp{−ıΔẼ α,r=1

1,0 t/2ℏ}, is 
represented by the purple-filled rectangles in the top two rows in 
Figure 1. In all cases, the blue circles and purple rectangles in 
Figure 1 contain symbols such as “R0,1” which represents the 
simplex on which the specific propagator acts on. Thus, Figure 1 
exemplifies the partitioned nature of our quantum propagation 

Figure 2. Grid-based representation of multidimensional quantum 
nuclear dynamics. All shared protons in the protonated water wire (a) 
are treated quantum mechanically along the grid dimensions shown. 
The multidimensional potential is treated here at the MP2 level, and 
approximations to the associated quantum nuclear dynamics and tensor 
network form on the potential presented. (b) shows the graphical 
description of (a), where only the nodes and edges are shown here. 
Compare (b) with the discussion in Appendix A where a graphical 
representation is presented for a more general system. 
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scheme as achieved through the graph-theoretic depiction of the 
electronic structure. 

Thus, given the matrix product state (MPS) approximation 
for χ(x) in eq 8, we may write 

{ } × = [ { } ] × 

[ { } ] × 

[ { } ] 

= = = 
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= = 

= =

E t x E x t x 

E x t x 

E x t x 

exp /2 ( ) exp ( ) /2 ( ) 

exp ( ) /2 ( ) 

exp ( ) /2 ( )

r r

j
j r j

j 
j 

r 

V
, 0 

1,0 
1, 0

1,0
1

1 
1

2 

1 

, 0
1,0

, 

, 0 
1,0

j j 

0 
1 

1

1 

i 

k 
jjjjjjj 
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where each square-bracketed term in eq 11, [···], is essentially a 
reduced-dimensional quantum propagation, where a set of 
reduced-dimensional quantum nuclear propagators are applied, 
in parallel, to the family of reduced-dimensional functions that 
are part of the matrix product state for the wavepacket, χ(x). The 
complexity reduction is already apparent from this expression if 
the number of possible values included for , , ..., 1 2 1, that is, 
the entanglement dimensions, is small. This is generally the case 
in most chemical systems where entanglement entropy grows as 
the area of the Hilbert space as opposed to the volume,137 and 
we will see this to be the case in the Results section as well. In this 
case, the complexity of the right side of eq 11 is approximately 

( )/ , given that nuclear dimensions are divided across 
nodes with discretizations per nuclear degree of freedom, 

thus greatly reducing the exponential scaling complexity. Note 
that the individual quantum propagation steps captured in eq 
11, for example, 

= { }= =x E x t x( ) exp ( ) /2 ( )j 
j j r j

j 
j, , 0

1,0
,j j j j1 1 (12) 

may be computed in parallel, yielding a linear speedup of over 
and above the ( ) / scaling. Also, note that eq 12 only 
contains functions of each nodal dimension and not those of the 
full system. Hence, the result from the action in eq 11 remains an 

Figure 3. The figure presents an additional layer of sophistication beyond Figure 1 yielding the structure of the graph-theory-inspired tensor network 
form of the full quantum propagator. The term Rα,r 

i represents the i-th quantum nuclear dimension inside the α-th (r + 1)-body fragment. The lowest 
row represents a molecular system that is represented as a graph (second row from the bottom) that leads to a matrix product state representation of 
the quantum nuclear wavepacket (third row from the bottom). All other rows inside the figure present the potential propagator terms for the full 
molecular system exp{−ıElevel,0(r)t/ℏ}, nodes (exp{−ıΔẼα,r=0

1,0 t/ℏ}), and edges (exp{−ıΔẼα,r=1
1,0 t/ℏ}) present inside eq 10. It should be noted that the 

difference between this figure and Figure 1 is that the potential propagators for the edges are further decomposed into tensor networks (matrix product 
states). For example, γ0,11 , γ 1,2 

1 , ··· are used to denote the coupling across the dimensions for edges (r = 1 in the superscript) indexed by α = 0, 1, ··· (in the
left subscript) and the indices for dimension, xi, from eq 16 (right subscript which goes as 1, 2, ···). The second one from the bottom row shows the 
potential propagator for the full molecular system that contains five coupled quantum nuclear dimensions, and the coupling is shown through ζ1, ζ2, 
···ζ5 symbols. See eq 14. Furthermore, the approach here also naturally lends itself to creation of a new quantum algorithm consistent with the work in 
ref 34. 
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MPS state, with entanglement dimensions, γ̅, as also seen from 
the bottom two rows of Figure 1. Thus, 

{ } × = =
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(13) 

The edge and face operations may be similarly described and 
act on reduced-dimensional functions as described in Figure 1. 
In this manner, the quantum propagators in Figure 1 can be 
extended to arbitrary-ranked + ( 1)-body fragments. Geo-
metrically, one may envision the quantum propagation of a 
function defined on some -dimensional hypercube (domain) 
as a product of many different lower-dimensional-hypercube 
propagation steps, where each such hypercube is of dimension-
ality [ × ]r / . 

Although the computational complexity of the graph 
components such as nodes, edges, triangles, and so on is in 
general much smaller than it is for the full molecular system, an 
additional degree of reduction in complexity can be obtained by 
also constructing MPS129 states of the edge and face 
propagators. This aspect is expressed in Figure 3 and is 
considered in more detail in the next section. 

3. TENSOR NETWORK DECOMPOSITION OF THE 
OPERATORS, exp{−ıElevel,0(R)t/2ℏ} and 
exp{−ıΔẼα,r 

1,0 t/2ℏ}, FOR r > 0 

In the above-mentioned section, we show how a significant 
portion of the potential energy time-evolution operator, e−ıV̂ t/2ℏ , 
can be simplified using the graph-theoretic molecular 
fragmentation procedure. This is done by exploiting the Rα,r 
dependence of the various fragment energies, {ΔẼα,r

1,0 (Rα,r)}. 
However, as seen from eq 4, the Elevel,0 (R)-dependent
propagator term, exp{−ıElevel,0(R)t/2ℏ}, does depend on the 
full nuclear space R. Furthermore, the edge, face, and higher-
order contributions to { { } }E tRexp ( ) /2r, also depend 

on multiple degrees of freedom within Rα,r. Thus, we utilize a 
tensor network22,25 decomposition to write exp{ −ıElevel,0t/2ℏ} 
as 
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(14) 

where, as in eq 8, exp {−ıElevel,0t/2ℏ}, a multidimensional 
function in the coordinate representation, is written as a matrix 
product state using the one-dimensional functions x( )1 

11 
, 

{ }x( )j 
j,j j1

, and x ( )
1 

. Here, x( ) 1 
11 

(or x ( )
1

) 

represents the ζ1-th (or -th) one-dimensional function along 

the first (or last) dimension, and { }x( )j 
j,j j1

represents a one-

dimensional function along the j-th dimension that entangles the 
(j − 1)-th and j-th dimensions. Thus, 
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(15) 

In the end, we have an entangled state as that in eq 8 on the left 
side of eq 15 that may be fed in as input into 

{ } i E x texp ( ) /2 as discussed in the previous section. The 
MPS form written in eq 15 is illustrated inside Figure 3 in the 
bottom two rows of the tensor diagram shown in olive and 
orange colors. 

However, at this stage, a similar MPS approximation can also 
be constructed for the edge and face propagation (exp-
{−ıΔẼα,r 

1,0 t/2ℏ} for r > 0) operations so as to further reduce 
their respective computational complexities. Thus, for r > 0, the 
potential propagators can also be written as the matrix product 
state similar to eq 14 as 
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(16) 

The entire process of quantum propagation, using eq 5, along 
with the tensor-network decomposition of propagators and 
wavepackets, is depicted in Figure 3. The bottom two rows in 
Figure 3 depict the water wire and its molecular graph 
representation. The third row from the bottom contains the 
MPS form (shown in orange) of the wavepacket which is first 
acted on by the tensor network form of the full system low level 
(presented in the olive color) as shown in eq 15. As noted above, 
at the end of this step, the state remains a tensor network but 
with expanded entanglement dimensions (γ̅, ζ̅). Following this, 
the action of the node fragment potential propagators (shown in 
blue) is depicted in the fifth row from the bottom. Right above 
the node propagators are MPS-approximated forms of the edge-
potential propagators shown inside purple rectangles. Each 
rectangle depicts that the tensor inside it belongs to a specific 
fragment. For example, the bottom left purple rectangular box 
contains the potential propagator whose bond dimensions are 
γα,1
1 . Also see eq 16. Here, the subscripts represent the index for 
the fragment entity, α, followed by the bond dimension, and the 
superscript represents the rank of the simplex forming that 
fragment (such as r = 1 for edges). The nodes inside the 
rectangle, for example, Rα,r

0 , denote the zeroth-nodal dimen-
sional MPS function for the α-th simplex of rank r. 

Following this discussion, we may write the final expression as 
an MPS state according to 

= { } { } 

= { { } } 

{ } 

=

x

E x t E x t x 

E t 

E x t x 

R

e ( ) 

exp ( ) /2 exp ( ) /2 ( ) 

exp ( ) /2 

exp ( ) /2 ( ) 

V x t 

level 

r 
r r

level 

V

( ) /2 

,0 

0 
, 

1,0 
, 

,0 

r 

(17) 

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article 

https://doi.org/10.1021/acs.jctc.2c00484 
J. Chem. Theory Comput. 2022, 18, 7243−7259 

7248 

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00484?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


which then leads to the final expression 
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which is an MPS with each individual dimensional propagation 
defined inside curly brackets on the second equation, {···}, and 
entanglement variables, { }, , r , reassigned explicitly on the 
right side. For example, 
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and so on. This is perhaps the most critical step in quantum 
propagation eq 3, and as discussed, immediately following eq 7, 
the tensor network formalism that naturally arises from the 
graph decomposition scheme reduces complexity enormously. 
Specifically, the dimensional complexity of eq 3 may, in 
principle, be reduced to / , when rank- operations are 
needed in eqs 2, 4, and 5. See eq 19. However, it is also clear from 
eq 19 that the entanglement dimensions grow 

{ }, , r
(21) 

and numerical schemes to curtail this growth will be discussed in 
a future publication (this aspect is also noted in ref 138). 

Here, we mention the tensor network-based quantum 
dynamics approaches in refs 24 and 138. In ref 24, a model 
potential is used that contains one- and two-body interactions 
that involve a quartic potential for each proton and nearest-
neighbor proton−proton interactions. When this potential is 
exponentiated (or used within the Chebyshev scheme in ref 24), 
it only involves the action of one and two quantum degrees of 
freedom at any given moment. Thus, in ref 24, the computa-
tional complexity is reduced by suitable choice of the model 
potential. In ref 138, quantum dynamics is performed using 

matrix product states and matrix product operators, and the 
potential surfaces are obtained using Taylor expansion139,140 

around a reference (optimized) geometry. As mentioned in ref 
138, for long-time dynamics, the wave function explores regions 
of the potential energy surfaces that cannot be efficiently 
obtained using the power series approximation. On the contrary, 
our approach is a “direct” approach17,141,142 where appropriate 
grid spread is chosen to make sure that the wave function is 
contained while incorporating the appropriate anharmonicity of 
the multidimensional potential. Even in comparison with the 
direct grid-based approaches in refs 141 and 142 where potential 
surfaces are obtained using machine learning-based potentials 
using CASSCF at the 3-21g basis set, the potential energy 
surfaces used for this publication are at post-Hartree−Fock 
accuracy [MP2/6-31++g(d,p)] but at a DFT cost. Also, note 
that the tensor-network representation for the wavepacket in eq 
8 (in turn, the propagator in eq 5 and Figures 1 and 3) follows 
the molecular graph and is general and is not restricted to have 
a matrix product state form. This aspect is also discussed in 
Appendix A for other systems. 

Additionally, in the Results section mentioned below, as a step 
toward numerically benchmarking and analyzing the accuracy of 
the theory presented here, we also inspect the MPS form of the 
potential given by 
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and similarly the potential propagator 
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4. MULTIDIMENSIONAL POTENTIAL ENERGY 
SURFACES FOR A PROTONATED WATER WIRE 
FROM TENSOR NETWORK DECOMPOSITION OF 
GRAPH-THEORETIC FRAGMENTATION 

The molecular system studied in this paper is a protonated water 
wire143−150 with an associated molecular graph shown in Figure 
2. In Appendix A, we show how this formalism can also be used 
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in more complex systems. Protonated water wires are an 
important class of molecular systems as these are found in many 
constrained environments such as biological membranes and 
enzyme active sites,143−145 ion channels,146 carbon nano-
tubes,147−149 and fuel cells.150 Water wires are also present in 
the photosynthetic reaction center of Rhodobacter sphaeroides 
where they are responsible for proton transfer to a secondary 
quinone group.144 Furthermore, the lightweight hydrogen 
nucleus makes quantum nuclear effects important in such 
cases;151−154 additionally, the multidimensional quantum 
nuclear effects in such systems are also known to be 
critical.155,156 

In our studies for the potential energy surface calculations 
from eq 1, we have used DFT with the hybrid exchange− 
correlation functional (B3LYP) as “level,0” and Møller−Plesset 
perturbation theory (MP2) as “level,1” of the electronic 
structure. Both levels of theory utilize the Pople style 6-31+ 
+g(d,p) basis set as part of eq 1. This is not a requirement, and in 
refs 51, 56, 62, and 63, other levels of theory and basis have been 
explored. As discussed in refs 46 and 54, we use the description 
of potential energy surfaces using multiple graphs. 

In the Supporting Information, we present critical computa-
tional aspects of our approach and contrast these with other 
existing techniques. One critical piece of the computational 
efficiency arises from the number of direct product functions 
needed in a matrix product state such as in eq 14. We present a 
scheme to appropriately tailor the number of such direct product 
functions, reorder these as per the discussion (see eq S11), and 
introduce a singular value ratio, eq S11, that gauges the extent to 
which each product state contributes to the overall accuracy. 
The remaining portion of the Results section is organized as 
follows: we use this measure in Sections 4.1 and 4.2 to compute 
the accuracy and efficiency of the scheme presented here using 
the error estimates presented in Section S4. 
4.1. Multidimensional Potential Energy Surfaces. The 

water wire system is treated as one coupled quantum mechanical 
problem for the four hydrogen-bonded nuclear degrees of 
freedom shown in Figure 2. These nuclear degrees of freedom 
are treated in a sequential fashion allowing for the concerted, 
correlated treatment as indicated by the Grotthuss mecha-
nism157 of proton transfer in water clusters. The grid parameters 
for the potential energy surfaces used to define the coupled 
nuclear degrees of freedom are provided in Table 1 and shown in 

Figure 2a. Thus, physical dimensions R1, R2, ..., and R4 are along 
the proton transfer coordinates for the shared protons inside the 
water wire system, shown in Figure 2a. We increase the 
complexity of the coupled proton quantum nuclear problem, 
one dimension at a time, and the exponential increment in grid 
size with the dimensions is apparent from Table 1. 
In this section, the proton potential energy surfaces, 

{ }E R( ), , are treated using the MPS formalism. 

For the two-dimensional grid referred to as {R1, R2} in Table 
1, the potential energy surface is shown in Figure 4a along with 

the first singular vector along R1 in Figure 4b. Upon comparing 
Figure 4a,b, it is clear that the first singular vector captures the 
primary characteristics of the underlying potential energy 
surface along R1. The higher values of the potential energy, 
located along the edges of the grid, are captured by other 
singular vectors along with lower-energy regions of the surface. 

In fact, the singular vector shown in Figure 4b has similar 
characteristics as the so-called “single particle potentials” 
described in the POTFIT20,126 methodology but differs in that 
the reduced-dimensional vectors here are computed directly 
from the highly coupled potential as described in eq S6 inside 
Section S2. In this way, the needed entanglement is retained 
based on the measures discussed in Section S3, specifically eq 
S20. 

Errors computed using the measures introduced in Section 
S4, namely, eqs S22 and S24, are shown in Table 2. Here, only 
three direct product states = ( 3) are needed for the errors in 
the sub-kJ/mol accuracy range for the entire potential surface. 
Thus, based on these results and the Ξ values in Table 2, the 
dimensions R1 and R2 appear to be relatively uncorrelated to 
each other. Further supporting this, the ground eigenstate 
weighted error, ΓGS (eq S24), requires one single direct product 
state to allow for sub-kcal/mol accuracy with respect to the MP2 
potential, and = 3 yields far higher accuracy. This effectively 
shows how the method here can be used to probe correlations 
between nuclear degrees of freedom. 

The errors in eigenvalues and the eigenvectors are 
represented as Δλi and ΔΛi and are defined using eqs S25 and 
S26, respectively, in Section S4. In the case of the two-
dimensional {R1, R2} system, the eigenvalue and the eigenvector 
errors for the ground state and the first excited state are provided 
in the last four columns of Table 2. Here, the MPS potential 
energy surfaces used to generate the eigenstates have errors 
shown in columns three and four in Table 2. The MPS potential 
energy surfaces produce eigenstates that are almost exact with 
6.1% ( = 3) of the total grid size (listed in Table 1). More 
importantly, the ground-state eigenvector is exact for an MPS 
with only one low-rank tensor along each dimension. For all 
measures of error, the two-dimensional potential energy surface 

Table 1. Grid Parameters for Potential Energy Surface 
Calculations Performed in Ref 46a 

dimensionality grid dimensions grid size 

2{R1, R2} 0.8 Å × 0.8 Å 992 = 9801 
3{R1, R2, R3} 0.8 Å × 0.8 Å × 0.8 Å 493 = 117,649 
4{R1, R2, R3, R4} 0.8 Å × 0.8 Å × 0.8 Å × 0.8 Å 494 = 5,764,801 

aThe physical dimensions along the proton transfer coordinates of a 
water wire molecule [(H2O)5H+] are shown using dashed lines in 
Figure 2a. 

Figure 4. The figure on the left shows the actual potential energy 
surface for the R1 and R2 quantum nuclear degrees of freedom. The 
right figure shows the first singular vector along R1. Notice here that the 
singular vector along the R1 dimension is similar to an average slice 
along the minimum in panel (a). This is an example of the tensor 
network decomposition capturing the most critical features of the input 
data function. 
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produces eigenstates that are exact with three direct product 
states. 
For the three-dimensional system with three shared protons, 

represented as {R1, R2, R3}, the results for Γ50 and ΓGS can be 
seen in Table 3. Here, again, less than 1% of the overall grid data 
is needed to represent the full surface at sub-kJ/mol accuracy. 
This corresponds to 12 direct product states, that is, = 12. 
This result is similar to the results for the two-dimensional, {R1, 
R2}, potential energy surface in Table 2 as it appears as if each 
singular bond dimension needs three singular vectors to 
accurately represent the potential energy surface. 
The errors for the eigenstates and eigenvalues for the three-

dimensional system are shown in the last four columns inside 
Table 3, and these results are again consistent with the errors in 
the potential energy surface provided in the same table. 

The grid containing four quantum nuclear degrees of 
freedom, namely, {R1, R2, R3, R4} in Table 1, appears to require 
more than three singular values per singular value bond 
dimension. In Table 4, 1512 direct product states are needed 
for sub-kcal/mol accuracy over the entire surface, and this result 
does not follow the previous rate that the two- and three-
dimensional potential energy surfaces shared. It appears that the 
R4 quantum nuclear degree of freedom increases the global 
entanglement of the system driving the number of direct product 
states to increase in the third and fourth singular value bond 
dimension. This is in part due to an increase in the range 
sampled by the potential energy surface. This can be seen from 
Figure 5, where the histograms show the percentage of nuclear 
geometries present within different potential energy windows. 
The fraction of configurations with a potential energy of less 
than 20 kcal/mol from the bottom of the potential is 44% for 

Table 2. Results for a Potential Energy Surface for (R1, R2) Represented as a Tensor Networka 

b Ξl
c eq S20 % gridd Γ50 (kcal/mol) eq S22 ΓGS (kcal/mol) eq S24 Δλ0 (kcal/mol) eq S25 Δλ1 (kcal/mol) eq S25 ΔΛ0 eq S26 ΔΛ1 eq S26 

1 1.0 2.0 2.4 0.95 0.80 0.19 1 0.81 
2 0.023 4.0 1.1 0.66 0.58 0.19 1 0.97 
3 0.012 6.1 5.1 × 10−3 4.9 × 10−3 2.6 × 10−3 1.7 × 10−3 1 1 
4 3.7 × 10−5 8.1 2.7 × 10−3 2.2 × 10−3 2.0 × 10−4 1.4 × 10−3 1 1 
5 1.9 × 10−5 10.0 1.5 × 10−4 1.5 × 10−4 3.1 × 10−7 1.1 × 10−5 1 1 

aThe first column here represents the number of singular vectors along each dimension in the MPS as defined in eq S18 of the Supporting 
Information. The second column is the product singular value SVR, Ξl, defined using eq S20 in the Supporting Information used to truncate the 
global measure of entanglement. The third column corresponds to the percentage of the overall coupled proton grid (Table 1) needed for the MPS 
representation of the potential energy surface. The final two columns represent the errors Γ50 and ΓGS in the potential energy surface defined 
according to eq S22 in Appendix S4. b Number of product singular values retained as explained in Section S3, see eq S18. cSingular value ratio for 
the least significant product vector retained in eq S18 as dictated by eq S20. dPercentage of the total number of grid points (see Table 1) needed to 
achieve the accuracy given by Γ50, ΓGS, Δλi, and ΔΛi. 

Table 3. Results for a Potential Energy Surface Where the First Three Dimensions, {R1, R2, R3}, Are Coupled Together 

p1 
a p2 

a b Ξl
c eq S20 % gridd 

Γ50 (kcal/mol) eq 
S22 

ΓGS (kcal/mol) eq 
S24 

Δλ0 (kcal/mol) eq 
S25 

Δλ1 (kcal/mol) eq 
S25 

ΔΛ0 eq 
S26 

ΔΛ1 eq 
S26 

1 1 1 1.0 0.12 3.4 2.2 2.2 0.72 0.99 0.42 
1 2 2 0.017 0.21 2.7 2.1 2.1 0.90 0.99 0.73 
1 3 3 8.3 × 10−3 0.29 2.5 1.5 1.4 0.53 0.99 0.74 
2 2 4 8.1 × 10−3 0.33 0.94 1.1 1.0 0.51 1.0 0.98 
3 4 12 2.4 × 10−5 0.79 0.11 0.085 0.038 0.015 1.0 1.0 

aThe first two columns show the number of singular values along the R1−R2 dimensional separation and the R2−R3 dimensional separation. This 
arises due to the sequential bipartite SVD algorithm used here as described in Section S3 and ref 22. bNumber of product singular values retained 
as explained in Section S3, see eq S18. cSingular value ratio for the least significant product vector retained in eq S18 as dictated by eq S20. 
dPercentage of the total number of grid points (see Table 1) needed to achieve the accuracy given by Γ50, ΓGS, Δλi, and ΔΛi. 

Table 4. Results for the Four-Dimensional Potential Energy Surfacea 

p1 p2 p3 Ξl eq S20 % grid 
Γ50 (kcal/mol) 

eq S22 
ΓGS (kcal/mol) 

eq S24 
Δλ0 (kcal/mol) 

eq S25 
Δλ1 (kcal/mol) 

eq S25 
ΔΛ0 eq 
S26 

ΔΛ1 eq 
S26 

1 1 1 1 1 3.0 × 10−3 3.9 4.9 5.0 3.5 1 0.64 
2 4 8 64 6.2 × 10−5 0.042 2.2 1.4 1.0 1.2 1 0.99 
2 5 10 100 3.8 × 10−5 0.061 2.1 1.7 1.3 0.91 1 0.93 
3 19 24 1368 1.0 × 10−4 0.46 1.1 0.71 0.39 0.22 1 1 
3 21 24 1512 1.1 × 10−4 0.50 0.86 0.46 0.24 0.17 1 1 
3 22 24 1584 6.4 × 10−3 0.53 0.82 0.38 0.18 0.15 1 1 
3 29 26 2262 1.0 × 10−5 0.74 0.75 0.33 0.06 0.056 1 0.99 
4 48 30 5760 7.7 × 10−6 1.4 0.64 0.33 0.12 0.079 1 0.99 
5 68 42 14,280 4.5 × 10−6 2.8 0.35 0.17 0.067 0.064 1 1 
10 131 48 62,880 3.1 × 10−15 6.5 0.23 0.21 0.070 0.052 1 1 
20 277 48 265,920 1.5 × 10−16 16 0.098 0.11 3.5 × 10−3 8.2 × 10−3 1 1 
24 901 48 1,037,952 7.5 × 10−18 55 0.020 0.042 7.5 × 10−4 2.6 × 10−4 1 1 

aHere, the columns are similar to those seen in Tables 2 and 3. 
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two-dimensional, 25% for three-dimensional, and only 7% for 
the four-dimensional potential surfaces. Similarly, the fraction of 
nuclear configurations with potential energy less than 30 kcal/ 
mol is 56% for two-dimensional, 39% for three-dimensional, and 
16% for the four-dimensional potential surfaces. Additionally, as 
seen in Figure 5, the {R1, R2, R3, R4} potential surface occupies a 
much broader range with a shoulder as far out as 120 kcal/mol 
above the lowest energy configuration. This signifies that the 
potential energy increases steeply along the fourth dimension 
and increases the extent of confinement. The shape of the 
potential is determined by the donor−acceptor distances. For 
the water wire system shown in Figure 2a, the donor−acceptor 
distance for R4 (3.1 Å) is significantly larger than the donor− 
acceptor distances for R1 (2.3 Å), R2 (2.3 Å), and R3 (2.4 Å). 
Hence, the potential energy along R4 increases steeply as the 
proton is largely bound to its donor. The computational 
methods introduced here are sensitive to the levels of details. 

For the four-dimensional quantum nuclear degrees of 
freedom, the potential energy surface must contain more than 
1000 direct product states for accurate eigenvectors and 
eigenvalues. However, these still correspond to less than 1% of 
the overall multidimensional grid space. Furthermore, the MPS 
potential energy surface reproduces the ground-state eigenvec-
tor with a single direct product state along each of the quantum 
nuclear degrees of freedom. 
In the next section, we inspect the accuracy and efficiency of 

the propagator, { }{ }E tRexp ( ) /2, , when the methods 
presented in the previous sections are used. 
4.2. Tensor Network Form of { }{ }E tRexp ( ) /2, . We 

next probe the accuracy and efficiency of the representation of 
the propagator, { }{ }E tRexp ( ) /2, , discussed above and 

specifically in eq 5. Again, the same analysis schemes are used as 
outlined above, where the form of the propagator is studied by 
incrementally increasing the complexity of the protonated water 
wire system, one dimension at a time. However, unlike the case 
of the potential, the value of the time step, t, in eq 5 is critical and 

is chosen as noted in the captions of Tables 5−7. In general, this 
critical choice is made during dynamics calculations to keep the 

error in propagation small. The error in quantum propagation 
based on eq 3 grows as t( ) 3 due to the Trotter factorization of 
the symmetric split operator. 114−118 

In Tables 5−7, we present our results. In all cases, we gauge 
the accuracy using the parameter Γfid defined using eq S27 inside 
the Supporting Information. We gauge efficiency using , 
which captures the number of direct product states needed to 
reproduce the propagator at the respective levels of accuracy 
depicted by Γfid and the corresponding reduction in grid size 
associated with use of the product states. In all cases, we find that 

Figure 5. The figure presents the distribution of the water wire 
configurations according to their potential energy for the two-, three-, 
and four-dimensional cases. Note that the share of low-energy 
configurations is decreased significantly as we go higher in 
dimensionality. 

Table 5. Tensor Network Decomposition of 
{ }{ }E tRexp ( ) /2, for the Two-Dimensional ({R1, R2}) 

Casea 

Ξl eq S20 % grid Γfid eq S27 

1 1.0 2.0 0.96 
2 0.27 4.0 1.0 
3 0.024 6.1 1.0 
4 2.5 × 10−3 8.1 1.0 

aThe time step is chosen to be t = 2.14 fs. The first column is the total 
number of singular vectors along the two chosen dimensions. The 
second column is the product singular value ratio (eq S20 in the 
Supporting Information), followed by the total percentage of the 
overall grid used to achieve the accuracy shown under Γfid. 

Table 6. Tensor Network Decomposition of 
{ }{ }E tRexp ( ) /2, for the {R1, R2, R3} Coupled Systema 

p1 
b p2 

b c Ξl
d eq S20 % gride Γfid eq S27 

1 1 1 1.0 0.12 0.98 
3 4 12 6.0 × 10−4 0.79 1.0 
3 5 15 6.8 × 10−5 0.96 1.0 
4 7 28 6.3 × 10−7 1.6 1.0 

aHere, t = 1.209 fs. The parameters p1, p2, , and Ξl are reiterated 
here for clarity purposes and hold the same meaning as in Table 3. 
The third column refers to the number of product singular values 
defined in the Supporting Information using eq S12 with errors shown 
using eqs S20 and S27. bNumber of product singular values retained 
as explained in Section S3, see eq S18. cNumber of product singular 
values retained as explained in Section S3, see eq S18. dSingular value 
ratio for the least significant product vector retained in eq S18 as 
dictated by eq S20. ePercentage of the total number of grid points 
(see Table 1) needed to achieve the accuracy given by Γfid. 

Table 7. Tensor Network Decomposition of 
{ }{ }E tRexp ( ) /2, for the {R1, R2, R3, R4} Potential 

Energy Surfacea 

p1 p2 p3 Ξl eq S20 % grid Γfid eq S27 

1 1 1 1 1.0 3.4 × 10−3 0.96 
1 3 4 12 0.010 0.017 0.99 
1 3 5 15 5.8 × 10−3 0.020 0.99 
3 8 12 288 7.7 × 10−4 0.11 1.0 
3 21 24 1512 3.2 × 10−5 0.50 1.0 
18 133 42 100,548 8.6 × 10−7 6.8 1.0 
24 441 48 508,032 7.2 × 10−18 27 1.0 

aHere, t = 1.209 fs. The parameters in the columns retain the same 
meanings as in Tables 4 and 6. 
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our results are consistent with those found for the potential. For 
studies involving dimensions {R1, R2} and also those involving 
{R1, R2, R3}, there are only a few product singular vectors 
needed, but this value grows sharply upon introduction of R4 
due to the increase in confinement afforded by the larger 
donor−acceptor distance for R4 as noted in the previous section. 
However, even in such cases, our graph-theoretic approach to 
represent the potential surface and the associated use of tensor 
networks greatly reduce the amount of data needed to achieve an 
accurate quantum propagator with little loss in accuracy. 

5. CONCLUSIONS 
Molecular fragmentation methods have revolutionized quantum 
chemistry by providing a range of options to obtain accurate 
post-Hartree−Fock energies, gradients, and other properties at 
much reduced computational cost, for systems of unprece-
dented size. The key idea in these methods has been the 
exploitation of the local correlation properties of molecular 
systems to only perform steeper scaling calculations in molecular 
subspaces that need such treatments. Furthermore, when these 
fragmentation methods are combined with many-body theory 
and ONIOM, indeed, these lead to a powerful alternative for 
efficient molecular simulations. 
Over a series of publications, we have introduced a graph-

theory-based fragmentation procedure that includes within it 
key elements from many-body approximations and ONIOM. 
This method has been used to compute accurate post-Hartree− 
Fock potential surfaces and AIMD trajectories. More recently,62 

these methods have been used to develop novel hybrid 
quantum-classical algorithms to be implemented on a stream 
of parallel quantum and classical hardware systems, in a 
completely asynchronous fashion, to arrive at an efficient, 
high-fidelity quantum circuit implementation. 

In this publication, we take on a very different goal for our 
graph-theoretic fragmentation procedure. In molecular systems, 
when quantum nuclear dynamics is needed, an accurate and 
efficient approximation for the quantum nuclear time-evolution 
operator is critical. This approach has two parts: one that arises 
from the free propagator and the other that arises from the 
exponentiation of a discretized version of the potential energy 
surface. It is for the latter that we introduce here a novel 
approximation based on the graph-theoretic molecular 
fragmentation approximation to the potential energy surface. 
In doing so, we find that the application of the new 
approximation to the exponential of the potential on some 
initial wavepacket automatically results in a tensor network form 

that enormously reduces the associated exponential computa-
tional complexity present within quantum nuclear dynamics. We 
demonstrate the method by computing potential surfaces and 
the exponential, time-evolution form of the same for a range of 
protonated water wire systems and find that the method 
accurately represents these at much reduced computational cost 
and reduced data storage. We also show how this approach can 
be extended to more complex systems. However, critical 
challenges remain. Although our approach allows for retention 
of long-range electron correlation effects to be included at some 
low level of electronic structure theory (such as DFT-B3LYP for 
the cases studied here) within the quantum nuclear dynamics 
description, certainly, the non-classical long-range order, which 
is the result of long-range correlation, would be absent when 
smaller values of are used in our formalism. It remains to be 
seen how effectively larger values of can reproduce true long-
range electron correlation (and associated coupling with nuclear 
quantization as represented within the current tensor-network 
approach). However, in such cases, our approach will allow a 
systematic procedure to improve the approximation by gradually 
increasing and also the edge-length cutoff criterion, to 
systematically improve results. 

■ APPENDIX A 

Molecular Graph and Tensor-Network Representations for 
More Complex Systems 
The molecular graph representations for a protonated water wire 
system are provided in the main text of the paper. Here, we 
present two additional discussions for a 310-helix (Figure 6a) and 
DNA (Figure 6b) fragmentation to showcase the generality of 
the graph-theoretic approach. Our graph-based fragmentation is 
general, and the electronic structure aspects have been discussed 
in refs 46, 49−57, 62, and 63. To help clarify, we present two 
illustrations in Figure 6, which show how the graph partition is 
done for more complex systems that may also display quantum 
nuclear effects. In Figure 6a, we show a 310-helix, which is 
stabilized by hydrogen bonds, and similarly in Figure 6b, a DNA 
double helix is also stabilized by hydrogen bonds. First, we 
explain how the graphs are obtained for these systems, and then, 
we show how tensor networks may be written if the shared 
protons in the hydrogen bonds are to be treated quantum 
mechanically (while our discussion here assumes nuclear 
quantum effects from shared protons, this is not a limitation in 
the method. One may generalize this to arbitrary quantum 
nuclear dimensions, but the numerical demonstration of this 
aspect is not considered here). 

Figure 6. Illustration of the molecular graph and tensor-network decompositions for complex systems. 
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Our code for obtaining the graphs (and hence fragments that 
are denoted by the simplexes) is general and allows for arbitrary 
graph formation, based on the needed (local and nonuniform) 
many-body interactions. The system in Figure 6a was used in ref 
52. For the electronic structure portion, the graph is first 
generated by defining a set of nodes which represent coarse-
grained molecular units such as water, hydronium, a single 
amino acid, and so forth. Next, an upper limit to the spatial 
extent of two-body interactions is specified which helps 
determine edges and thus the graph. For example, in Figure 
6a, the nodes are amino acid monomers, whereas the edges 
include all interactions between an amino acid monomer and 
monomers in a neighboring helical turn. Our Python-based code 
then generates all fragments up to a maximum rank specified 
by the user. Furthermore, now the computation of Eα,r 

level,1(Rα,r) 
and Eα,r 

level,0 (Rα,r) in eqs 1 and 2 is completely independent, and 
hence, the associated electronic structure calculations are 
spawned in an asynchronous manner. The potential surface is 
generated in a similar manner by considering a collection of 
simplexes (or fragments) that capture all the needed many-body 
interactions, triggered by a general graph formalism.46,54,57 

When quantum nuclear effects are needed, the current paper 
derives tensor networks from the above-mentioned graph 
decomposition, and eqs 4 and 5 represent the most general 
expression for the resulting action, which applies to all graph 
structures. However, in such general situations, the appropriate 
tensor network topology may be more complicated and may not 
in general have an MPS form if one were to consider the most 
significant correlations. This can readily be seen from Figure 7 
which represents a natural generalization of Figure 3, except now 
the tensor network formalism (eqs 4 and 5) is applied to the 
graphical depiction in Figure 6a. Thus, the bottom layer of 
Figure 7 represents the graphical depiction in Figure 6a. 
Following this, the brown layer in Figure 7 represents the tensor 

network depiction of the quantum nuclear wavepacket. That is, 
the initial nuclear wavepacket now has a more general form than 
that in eq 8, in that each tensor core that represents the nuclear 
degrees of freedom within one node is connected now based on 
the graph structure of the molecular system. The potential 
propagator however retains its general form in eqs 4 and 5 and 
hence can still be applied to this more general initial wavepacket. 
As a result, the action of the nodal portions (V0 terms in eq 5) is 
represented using the dark-blue spheres in Figure 7, whereas the 
edge portions are represented using the light-blue rods in Figure 
7. We compare these with the appropriate portions of Figure 3. 
The full system low level (first term on the right side of eq 4) is 
represented in pink in Figure 7 and retains the same structure as 
that of the original graph. 

Although clearly, the general situation may warrant initial 
wavepackets that are not MPS states, the structure of eqs 4 and 5 
retains its general form. Even so, if needed, an MPS can always 
be constructed for any rank- tensor. The only question is 
whether it has the maximum compression of data based on graph 
topologies such as those shown here. Although the expressions 
provided in the paper are general and will still apply to arbitrary 
tensor-network input states, numerical implementation of the 
same will be reserved for a future publication. Furthermore, 
whether such general TN states need to be considered or not for 
any given problem would be a choice based on efficiency versus 
accuracy. Although on the one end, the MPS form may be easier 
to handle, more general TN forms such as those in Figure 7 may 
appropriately capture the molecular correlations. In such 
situations, for example, the MPS may need more bond 
dimensions for the full system low level for accurate simulations. 
Additionally, as seen in Figure 6b, the quantum nuclear degrees 
of freedom encompassed within a node are correlated to several 
other nodes (through edges and faces), but the resultant 
propagator is still of the same product form as that in eqs 4 and 5. 

Figure 7. Similar to Figure 3 but now the tensor network formalism is applied to the graphical depiction in Figure 6a. Note that the bottom figure here 
is the same as the graphical rendering in Figure 6a. 
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Although our propagation code is written in a general way to 
handle such situations, it is still sensitive to the choice of the 
initial wavepacket (i.e., MPS or not), and numerical testing is 
essential in such cases. This paper numerically illustrates our 
work for an MPS input state. 
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theoretical treatments of the dynamics of electrons and nuclei in 
molecular systems. Rev. Mod. Phys. 1994, 66, 917. 
(11) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. 
A fifth-order perturbation comparison of electron correlation theories. 
Chem. Phys. Lett. 1989, 157, 479−483. 
(12) Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path 
Integrals; McGraw-Hill Book Company: New York, 1965. 
(13) Meyer, H.-D.; Manthe, U.; Cederbaum, L. S. The Multi-
Configurational Time-Dependent Hartree Approach. Chem. Phys. Lett. 
1990, 165, 73. 
(14) Nielsen, M. A.; Chuang, I. L. Quantum Computation and 
Quantum Information; Cambridge University Press: Cambridge, 2000. 
(15) Feynman, R. P.; Hey, J.; Allen, R. W. Feynman Lectures on 
Computation; Addison-Wesley Longman Publishing Co., Inc., 1998. 
(16) Jakowski, J.; Sumner, I.; Iyengar, S. S. Computational 
Improvements to Quantum Wave Packet ab Initio Molecular Dynamics 
Using a Potential-Adapted, Time-Dependent Deterministic Sampling 
Technique. J. Chem. Theory Comput. 2006, 2, 1203. 
(17) Sumner, I.; Iyengar, S. S. Quantum Wavepacket Ab Initio 
Molecular Dynamics: An Approach for Computing Dynamically 
Averaged Vibrational Spectra Including Critical Nuclear Quantum 
Effects. J. Phys. Chem. A 2007, 111, 10313. 
(18) Braams, B. J.; Bowman, J. M. Permutationally invariant potential 
energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 2009, 28, 
577. 
(19) Hocker, D.; Li, X.; Iyengar, S. S. Shannon Entropy Based Time-
Dependent Deterministic Sampling for Efficient “On-the-Fly” 
Quantum Dynamics and Electronic Structure. J. Chem. Theory Comput. 
2011, 7, 256. 
(20) Peláez, D.; Meyer, H.-D. The multigrid POTFIT (MGPF) 
method: Grid representations of potentials for quantum dynamics of 
large systems. J. Chem. Phys. 2013, 138, 014108. 
(21) DeGregorio, N.; Iyengar, S. S. Efficient and Adaptive Methods 
for Computing Accurate Potential Surfaces for Quantum Nuclear 
Effects: Applications to Hydrogen-Transfer Reactions. J. Chem. Theory 
Comput. 2018, 14, 30−47. 
(22) DeGregorio, N.; Iyengar, S. S. Adaptive Dimensional Decoupling 
for Compression of Quantum Nuclear Wave Functions and Efficient 
Potential Energy Surface Representations through Tensor Network 
Decomposition. J. Chem. Theory Comput. 2019, 15, 2780. 
(23) Hackbusch, W.; Khoromskij, B. N. Tensor-product approx-
imation to operators and functions in high dimensions. J. Complexity 
2007, 23, 697−714. 
(24) Greene, S. M.; Batista, V. S. Tensor-Train Split-Operator Fourier 
Transform (TT-SOFT) Method: Multidimensional Nonadiabatic 
Quantum Dynamics. J. Chem. Theory Comput. 2017, 13, 4034−4042. 
(25) Oru ́ s, R. A practical introduction to tensor networks: Matrix 
product states and projected entangled pair states. Ann. Phys. 2014, 349, 
117−158. 
(26) Wang, H.; Thoss, M. Multilayer formulation of the multi-
configuration time-dependent Hartree theory. J. Chem. Phys. 2003, 119, 
1289−1299. 
(27) Kassal, I.; Jordan, S. P.; Love, P. J.; Mohseni, M.; Aspuru-Guzik, 
A. Polynomial-time quantum algorithm for the simulation of chemical 
dynamics. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18681−18686. 
(28) MacDonell, R. J.; Dickerson, C. E.; Birch, C. J.; Kumar, A.; 
Edmunds, C. L.; Biercuk, M. J.; Hempel, C.; Kassal, I. Analog quantum 
simulation of chemical dynamics. Chem. Sci. 2021, 12, 9794−9805. 
(29) Ollitrault, P. J.; Baiardi, A.; Reiher, M.; Tavernelli, I. Hardware 
efficient quantum algorithms for vibrational structure calculations. 
Chem. Sci. 2020, 11, 6842−6855. 
(30) Sawaya, N. P. D.; Menke, T.; Kyaw, T. H.; Johri, S.; Aspuru-
Guzik, A.; Guerreschi, G. G. Resource-efficient digital quantum 
simulation of d-level systems for photonic, vibrational, and spin-s 
Hamiltonians. npj Quantum Inf. 2020, 6, 49. 

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article 

https://doi.org/10.1021/acs.jctc.2c00484 
J. Chem. Theory Comput. 2022, 18, 7243−7259 

7255 

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00484?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00484/suppl_file/ct2c00484_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Srinivasan+S.+Iyengar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6526-2907
mailto:iyengar@indiana.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anup+Kumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicole+DeGregorio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+Ricard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00484?ref=pdf
https://doi.org/10.1021/ar5003347?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar5003347?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar9001284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar9001284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr050301x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr050301x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501655v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501655v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501655v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev.physchem.49.1.337
https://doi.org/10.1146/annurev.physchem.55.091602.094446
https://doi.org/10.1146/annurev.physchem.55.091602.094446
https://doi.org/10.1021/jp7103215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp7103215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900630n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900630n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/revmodphys.66.917
https://doi.org/10.1103/revmodphys.66.917
https://doi.org/10.1103/revmodphys.66.917
https://doi.org/10.1016/s0009-2614(89)87395-6
https://doi.org/10.1016/0009-2614(90)87014-i
https://doi.org/10.1016/0009-2614(90)87014-i
https://doi.org/10.1021/ct600131g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600131g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600131g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600131g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp074522d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp074522d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp074522d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp074522d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/01442350903234923
https://doi.org/10.1080/01442350903234923
https://doi.org/10.1021/ct1005856?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1005856?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1005856?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4773021
https://doi.org/10.1063/1.4773021
https://doi.org/10.1063/1.4773021
https://doi.org/10.1021/acs.jctc.7b00927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01113?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jco.2007.03.007
https://doi.org/10.1016/j.jco.2007.03.007
https://doi.org/10.1021/acs.jctc.7b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/1.1580111
https://doi.org/10.1073/pnas.0808245105
https://doi.org/10.1073/pnas.0808245105
https://doi.org/10.1039/d1sc02142g
https://doi.org/10.1039/d1sc02142g
https://doi.org/10.1039/d0sc01908a
https://doi.org/10.1039/d0sc01908a
https://doi.org/10.1038/s41534-020-0278-0
https://doi.org/10.1038/s41534-020-0278-0
https://doi.org/10.1038/s41534-020-0278-0
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00484?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(31) Teplukhin, A.; Kendrick, B. K.; Babikov, D. Solving complex 
eigenvalue problems on a quantum annealer with applications to 
quantum scattering resonances. Phys. Chem. Chem. Phys. 2020, 22, 
26136−26144. 
(32) Jahangiri, S.; Arrazola, J. M.; Quesada, N.; Delgado, A. Quantum 
algorithm for simulating molecular vibrational excitations. Phys. Chem. 
Chem. Phys. 2020, 22, 25528−25537. 
(33) Wang, C. S.; Curtis, J. C.; Lester, B. J.; Zhang, Y.; Gao, Y. Y.; 
Freeze, J.; Batista, V. S.; Vaccaro, P. H.; Chuang, I. L.; Frunzio, L.; Jiang, 
L.; Girvin, S. M.; Schoelkopf, R. J. Efficient Multiphoton Sampling of 
Molecular Vibronic Spectra on a Superconducting Bosonic Processor. 
Phys. Rev. X 2020, 10, 021060. 
(34) Saha, D.; Iyengar, S. S.; Richerme, P.; Smith, J. M.; Sabry, A. 
Mapping Quantum Chemical Dynamics Problems to Spin-Lattice 
Simulators. J. Chem. Theory Comput. 2021, 17, 6713−6732. 
(35) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; 
Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A variational eigenvalue 
solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. 
(36) Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; 
Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum 
eigensolver for small molecules and quantum magnets. Nature 2017, 
549, 242. 
(37) O’Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; 
McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; 
Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. 
G.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, 
C.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; 
Coveney, P. V.; Love, P. J.; Neven, H.; Aspuru-Guzik, A.; Martinis, J. M. 
Scalable Quantum Simulation of Molecular Energies. Phys. Rev. X 2016, 
6, 031007. 
(38) Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An 
adaptive variational algorithm for exact molecular simulations on a 
quantum computer. Nat. Commun. 2019, 10, 3007. 
(39) Nam, Y.; Chen, J.-S.; Pisenti, N. C.; Wright, K.; Delaney, C.; 
Maslov, D.; Brown, K. R.; Allen, S.; Amini, J. M.; Apisdorf, J.; Beck, K. 
M.; Blinov, A.; Chaplin, V.; Chmielewski, M.; Collins, C.; Debnath, S.; 
Hudek, K. M.; Ducore, A. M.; Keesan, M.; Kreikemeier, S. M.; Mizrahi, 
J.; Solomon, P.; Williams, M.; Wong-Campos, J. D.; Moehring, D.; 
Monroe, C.; Kim, J. Ground-state energy estimation of the water 
molecule on a trapped-ion quantum computer. npj Quantum Inf. 2020, 
6, 33. 
(40) Zhang, D.-B.; Yuan, Z.-H.; Yin, T. Variational Quantum 
Eigensolvers by Variance Minimization, 2020. arXiv preprint 
arXiv:2006.15781. 
(41) Parrish, R. M.; Hohenstein, E. G.; McMahon, P. L.; Martínez, T. 
J. Quantum Computation of Electronic Transitions Using a Variational 
Quantum Eigensolver. Phys. Rev. Lett. 2019, 122, 230401. 
(42) Shen, Y.; Zhang, X.; Zhang, S.; Zhang, J.-N.; Yung, M.-H.; Kim, 
K. Quantum implementation of the unitary coupled cluster for 
simulating molecular electronic structure. Phys. Rev. A 2017, 95, 
020501. 
(43) Xia, R.; Kais, S. Quantum machine learning for electronic 
structure calculations. Nat. Commun. 2018, 9, 4195. 
(44) Grimsley, H. R.; Claudino, D.; Economou, S. E.; Barnes, E.; 
Mayhall, N. J. Is the Trotterized UCCSD Ansatz Chemically Well-
Defined? J. Chem. Theory Comput. 2019, 16, 1−6. 
(45) Tilly, J.; Jones, G.; Chen, H.; Wossnig, L.; Grant, E. Computation 
of molecular excited states on IBM quantum computers using a 
discriminative variational quantum eigensolver. Phys. Rev. A 2020, 102, 
062425. 
(46) Kumar, A.; DeGregorio, N.; Iyengar, S. S. Graph-Theory-Based 
Molecular Fragmentation for Efficient and Accurate Potential Surface 
Calculations in Multiple Dimensions. J. Chem. Theory Comput. 2021, 
17, 6671−6690. 
(47) Yang, B.; Zhang, P.; Qu, C.; Wang, X. H.; Stancil, P. C.; Bowman, 
J. M.; Balakrishnan, N.; McLaughlin, B. M.; Forrey, R. C. Full-
Dimensional Quantum Dynamics of SiO in Collision with H2. J. Phys. 
Chem. A 2018, 122, 1511−1520. 

(48) Qu, C.; Conte, R.; Houston, P. L.; Bowman, J. M. Full-
dimensional potential energy surface for acetylacetone and tunneling 
splittings. Phys. Chem. Chem. Phys. 2021, 23, 7758−7767. 
(49) Li, J.; Iyengar, S. S. Ab Initio Molecular Dynamics Using 
Recursive, Spatially Separated, Overlapping Model Subsystems Mixed 
within an ONIOM-Based Fragmentation Energy Extrapolation 
Technique. J. Chem. Theory Comput. 2015, 11, 3978−3991. 
(50) Li, J.; Haycraft, C.; Iyengar, S. S. Hybrid Extended Lagrangian, 
Post-Hartree-Fock Born-Oppenheimer ab Initio Molecular Dynamics 
Using Fragment-Based Electronic Structure. J. Chem. Theory Comput. 
2016, 12, 2493. 
(51) Haycraft, C.; Li, J.; Iyengar, S. S. Efficient, “On-the-fly” Born− 
Oppenheimer and Car−Parrinello−type Dynamics with coupled 
cluster accuracy through Fragment Based Electronic Structure. J. 
Chem. Theory Comput. 2017, 13, 1887. 
(52) Ricard, T. C.; Haycraft, C.; Iyengar, S. S. Adaptive, geometric 
networks for efficient coarse-grained ab initio molecular dynamics with 
post-Hartree-Fock accuracy. J. Chem. Theory Comput. 2018, 14, 2852. 
(53) Ricard, T. C.; Iyengar, S. S. Efficiently Capturing Weak 
Interactions in ab Initio Molecular Dynamics with on-the-Fly Basis 
Set Extrapolation. J. Chem. Theory Comput. 2018, 14, 5535. 
(54) Kumar, A.; Iyengar, S. S. Fragment-based electronic structure for 
potential energy surfaces using a superposition of fragmentation 
topologies. J. Chem. Theory Comput. 2019, 15, 5769. 
(55) Ricard, T. C.; Kumar, A.; Iyengar, S. S. Embedded, graph-
theoretically defined many-body approximations for wavefunction-in-
DFT and DFT-in-DFT: Applications to gas- and condensed-phase ab 
initio molecular dynamics, and potential surfaces for quantum nuclear 
effects. Int. J. Quantum Chem. 2020, 120, No. e26244. 
(56) Ricard, T. C.; Iyengar, S. S. Efficient and Accurate Approach To 
Estimate Hybrid Functional and Large Basis-Set Contributions to 
Condensed-Phase Systems and Molecule-Surface Interactions. J. Chem. 
Theory Comput. 2020, 16, 4790. 
(57) Zhang, J. H.; Ricard, T. C.; Haycraft, C.; Iyengar, S. S. Weighted-
Graph-Theoretic Methods for Many-Body Corrections within 
ONIOM: Smooth AIMD and the Role of High-Order Many-Body 
Terms. J. Chem. Theory Comput. 2021, 17, 2672−2690. 
(58) Ayral, T.; Le Régent, F.-M.; Saleem, Z.; Alexeev, Y.; Suchara, M. 
Quantum Divide and Compute: Hardware Demonstrations and Noisy 
Simulations. In 2020 IEEE Computer Society Annual Symposium on VLSI 
(ISVLSI), 2020; pp 138−140. DOI: 10.1109/isvlsi49217.2020.00034 
(59) Peng, T.; Harrow, A. W.; Ozols, M.; Wu, X. Simulating Large 
Quantum Circuits on a Small Quantum Computer. Phys. Rev. Lett. 
2020, 125, 150504. 
(60) Perlin, M. A.; Saleem, Z. H.; Suchara, M.; Osborn, J. C. Quantum 
circuit cutting with maximum-likelihood tomography. npj Quantum Inf. 
2021, 7, 64. 
(61) Tang, W.; Tomesh, T.; Suchara, M.; Larson, J.; Martonosi, M. 
CutQC: Using Small Quantum Computers for Large Quantum Circuit 
Evaluations. In Proceedings of the 26th ACM International Conference on 
Architectural Support for Programming Languages and Operating Systems; 
Association for Computing Machinery, 2021; pp 473−486. 
DOI: 10.1145/3445814.3446758 
(62) Zhang, J. H.; Iyengar, S. S. Graph-|Q⟩⟨C|, a Graph-Based 
Quantum/Classical Algorithm for Efficient Electronic Structure on 
Hybrid Quantum/Classical Hardware Systems: Improved Quantum 
Circuit Depth Performance. J. Chem. Theory Comput. 2022, 18, 2885. 
(63) Zhu, X.; Iyengar, S. S. Graph Theoretic Molecular Fragmentation 
for Multidimensional Potential Energy Surfaces Yield an Adaptive and 
General Transfer Machine Learning Protocol. J. Chem. Theory Comput. 
2022, 18, 5125−5144. 
(64) Zhang, D. W.; Zhang, J. Z. H. Molecular fractionation with 
conjugate caps for full quantum mechanical calculation of protein-
molecule interaction energy. J. Chem. Phys. 2003, 119, 3599. 
(65) Hopkins, B. W.; Tschumper, G. S. Multicentred QM/QM 
Methods for Overlapping Model Systems. Mol. Phys. 2005, 103, 309. 
(66) Stoll, H.; Paulus, B.; Fulde, P. On the accuracy of correlation-
energy expansions in terms of local increments. J. Chem. Phys. 2005, 
123, 144108. 

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article 

https://doi.org/10.1021/acs.jctc.2c00484 
J. Chem. Theory Comput. 2022, 18, 7243−7259 

7256 

https://doi.org/10.1039/d0cp04272b
https://doi.org/10.1039/d0cp04272b
https://doi.org/10.1039/d0cp04272b
https://doi.org/10.1039/d0cp03593a
https://doi.org/10.1039/d0cp03593a
https://doi.org/10.1103/physrevx.10.021060
https://doi.org/10.1103/physrevx.10.021060
https://doi.org/10.1021/acs.jctc.1c00688?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00688?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41534-020-0259-3
https://doi.org/10.1038/s41534-020-0259-3
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.1103/physreva.95.020501
https://doi.org/10.1103/physreva.95.020501
https://doi.org/10.1038/s41467-018-06598-z
https://doi.org/10.1038/s41467-018-06598-z
https://doi.org/10.1021/acs.jctc.9b01083?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01083?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/physreva.102.062425
https://doi.org/10.1103/physreva.102.062425
https://doi.org/10.1103/physreva.102.062425
https://doi.org/10.1021/acs.jctc.1c00065?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00065?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00065?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.7b09762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.7b09762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/d0cp04221h
https://doi.org/10.1039/d0cp04221h
https://doi.org/10.1039/d0cp04221h
https://doi.org/10.1021/acs.jctc.5b00433?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00433?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00433?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00433?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b01107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b01107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b01107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.26244
https://doi.org/10.1002/qua.26244
https://doi.org/10.1002/qua.26244
https://doi.org/10.1002/qua.26244
https://doi.org/10.1002/qua.26244
https://doi.org/10.1021/acs.jctc.9b01089?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01089?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01089?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01287?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01287?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01287?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c01287?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/isvlsi49217.2020.00034
https://doi.org/10.1109/isvlsi49217.2020.00034
https://doi.org/10.1109/isvlsi49217.2020.00034?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/physrevlett.125.150504
https://doi.org/10.1103/physrevlett.125.150504
https://doi.org/10.1038/s41534-021-00390-6
https://doi.org/10.1038/s41534-021-00390-6
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3445814.3446758?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1591727
https://doi.org/10.1063/1.1591727
https://doi.org/10.1063/1.1591727
https://doi.org/10.1080/00268970512331317291
https://doi.org/10.1080/00268970512331317291
https://doi.org/10.1063/1.2052708
https://doi.org/10.1063/1.2052708
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00484?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(67) Huang, L.; Massa, L.; Karle, J. Kernel energy method: 
Application to DNA. Biochem 2005, 44, 16747. 
(68) Ganesh, V.; Dongare, R. K.; Balanarayan, P.; Gadre, S. R. 
Molecular Tailoring Approach for Geometry Optimization of Large 
Molecules: Energy Evaluation and Parallelization Strategies. J. Chem. 
Phys. 2006, 125, 104109. 
(69) Guo, W.; Wu, A.; Xu, X. XO: An extended ONIOM method for 
accurate and efficient geometry optimization of large molecules. Chem. 
Phys. Lett. 2010, 498, 203−208. 
(70) Jacobson, L. D.; Herbert, J. M. An Efficient, Fragment-Based 
Electronic Structure Method for Molecular Systems: Self-Consistent 
Polarization with Perturbative Two-Body Exchange and Dispersion. J. 
Chem. Phys. 2011, 134, 094118. 
(71) Richard, R. M.; Herbert, J. M. A Generalized Many-Body 
Expansion and a Unified View of Fragment-Based Methods in 
Electronic Structure Theory. J. Chem. Phys. 2012, 137, 064113. 
(72) Le, H.-A.; Tan, H.-J.; Ouyang, J. F.; Bettens, R. P. A. Combined 
Fragmentation Method: A Simple Method for Fragmentation of Large 
Molecules. J. Chem. Theory Comput. 2012, 8, 469. 
(73) Li, S.; Li, W.; Ma, J. Generalized Energy-Based Fragmentation 
Approach and Its Applications to Macromolecules and Molecular 
Aggregates. Acc. Chem. Res. 2014, 47, 2712. 
(74) Gordon, M.; Mullin, J.; Pruitt, S.; Roskop, L.; Slipchenko, L.; 
Boatz, J. Accurate Methods for Large Molecular Systems. J. Phys. Chem. 
B 2009, 113, 9646. 
(75) Raghavachari, K.; Saha, A. Accurate Composite and Fragment-
Based Quantum Chemical Models for Large Molecules. Chem. Rev. 
2015, 115, 5643. 
(76) Collins, M. A.; Bettens, R. P. A. Energy-Based Molecular 
Fragmentation Methods. Chem. Rev. 2015, 115, 5607. 
(77) Collins, M. A. Systematic Fragmentation of Large Molecules by 
Annihilation. Phys. Chem. Chem. Phys. 2012, 14, 7744. 
(78) Willow, S. Y.; Salim, M. A.; Kim, K. S.; Hirata, S. Ab initio 
molecular dynamics of liquid water using embedded-fragment second-
order many-body perturbation theory towards its accurate property 
prediction. Sci. Rep. 2015, 5, 14358. 
(79) Han, J.; Mazack, M. J.; Zhang, P.; Truhlar, D. G.; Gao, J. 
Quantum mechanical force field for water with explicit electronic 
polarization. J. Chem. Phys. 2013, 139, 054503. 
(80) Beran, G. J. Modeling polymorphic molecular crystals with 
electronic structure theory. Chem. Rev. 2016, 116, 5567. 
(81) Beran, G. J. O.; Nanda, K. Predicting Organic Crystal Lattice 
Energies with Chemical Accuracy. J. Phys. Chem. Lett. 2010, 1, 3480− 
3487. 
(82) Bates, D. M.; Smith, J. R.; Janowski, T.; Tschumper, G. S. 
Development of a 3-body:many-body integrated fragmentation method 
for weakly bound clusters and application to water clusters (H2O)n= 3 
− 10, 16, 17. J. Chem. Phys. 2011, 135, 044123. 
(83) Liu, J.; Qi, L.-W.; Zhang, J. Z. H.; He, X. Fragment Quantum 
Mechanical Method for Large-Sized Ion-Water Clusters. J. Chem. 
Theory Comput. 2017, 13, 2021. 
(84) Herbert, J. M. Fantasy versus reality in fragment-based quantum 
chemistry. J. Chem. Phys. 2019, 151, 170901. 
(85) Varandas, A. J.; Murrell, J. N. A many-body expansion of 
polyatomic potential energy surfaces: application to H n systems. 
Faraday Discuss. Chem. Soc. 1977, 62, 92. 
(86) Murrell, J.; Carter, S.; Farantos, S.; Huxley, P.; Varandas, A. 
Molecular Potential Energy Functions; Wiley: New York, 1984. 
(87) Varandas, A. J.; Brown, F. B.; Mead, C. A.; Truhlar, D. G.; Blais, 
N. C. A double many-body expansion of the two lowest-energy 
potential surfaces and nonadiabatic coupling for H3. J. Chem. Phys. 
1987, 86, 6258−6269. 
(88) Varandas, A.; Pais, A. A realistic double many-body expansion 
(DMBE) potential energy surface for ground-state O3from a 
multiproperty fit toab initiocalculations, and to experimental 
spectroscopic, inelastic scattering, and kinetic isotope thermal rate 
data. Mol. Phys. 1988, 65, 843. 
(89) Lynch, G. C.; Steckler, R.; Schwenke, D. W.; Varandas, A. J. C.; 
Truhlar, D. G.; Garrett, B. C. Use of scaled external correlation, a 

double many-body expansion, and variational transition state theory to 
calibrate a potential energy surface for FH2. J. Chem. Phys. 1991, 94, 
7136−7149. 
(90) Xantheas, S. S. Ab Initio Studies of Cyclic Water Clusters 
(H2O)n, N=1−6. II. Analysis of Many-body Interactions. J. Chem. Phys. 
1994, 100, 7523. 
(91) Dahlke, E. E.; Truhlar, D. G. Electrostatically Embedded Many-
Body Expansion for Large Systems, with Applications to Water 
Clusters. J. Chem. Theory Comput. 2007, 3, 46. 
(92) Hirata, S. Fast electron-correlation methods for molecular 
crystals: An application to the α, β1, and β2 modifications of solid 
formic acid. J. Chem. Phys. 2008, 129, 204104. 
(93) Bygrave, P. J.; Allan, N. L.; Manby, F. R. The embedded many-
body expansion for energetics of molecular crystals. J. Chem. Phys. 2012, 
137, 164102. 
(94) Yang, J.; Hu, W.; Usvyat, D.; Matthews, D.; Schütz, M.; Chan, G. 
K.-L. Ab initio determination of the crystalline benzene lattice energy to 
sub-kilojoule/mole accuracy. Science 2014, 345, 640. 
(95) Cisneros, G. A.; Wikfeldt, K. T.; Ojamäe, L.; Lu, J.; Xu, Y.; 

Torabifard, H.; Bartók, A. P.; Csányi, G.; Molinero, V.; Paesani, F. 
Modeling Molecular Interactions in Water: From Pairwise to Many-
Body Potential Energy Functions. Chem. Rev. 2016, 116, 7501. 
(96) Demerdash, O.; Mao, Y.; Liu, T.; Head-Gordon, M.; Head-

Gordon, T. Assessing many-body contributions to intermolecular 
interactions of the AMOEBA force field using energy decomposition 
analysis of electronic structure calculations. J. Chem. Phys. 2017, 147, 
161721. 
(97) Yu, Q.; Bowman, J. M. Communication: VSCF/VCI vibrational 
spectroscopy of H7O3+ and H9O4+ using high-level, many-body 
potential energy surface and dipole moment surfaces. J. Chem. Phys. 
2017, 146, 121102. 
(98) Yao, K.; Herr, J. E.; Parkhill, J. The many-body expansion 
combined with neural networks. J. Chem. Phys. 2017, 146, 014106. 
(99) Maseras, F.; Morokuma, K. IMOMM: A new integratedab initio 
+ molecular mechanics geometry optimization scheme of equilibrium 
structures and transition states. J. Comput. Chem. 1995, 16, 1170. 
(100) Svensson, M.; Humbel, S.; Froese, R. D.; Matsubara, T.; Sieber, 

S.; Morokuma, K. ONIOM: a multilayered integrated MO + MM 
method for geometry optimizations and single point energy predictions. 
A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative 
addition. J. Phys. Chem. 1996, 100, 19357. 
(101) Kerdcharoen, T.; Morokuma, K. ONIOM-XS: an extension of 
the ONIOM method for molecular simulation in condensed phase. 
Chem. Phys. Lett. 2002, 355, 257. 
(102) Chung, L. W.; Hirao, H.; Li, X.; Morokuma, K. The ONIOM 
Method: Its Foundation and Applications to Metalloenzymes and 
Photobiology. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 327. 
(103) Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.; Page, A. J.; 
Hatanaka, M.; Petrova, G. P.; Harris, T. V.; Li, X.; Ke, Z.; Liu, F.; Li, H.-
B.; Ding, L.; Morokuma, K. The ONIOM Method and Its Applications. 
Chem. Rev. 2015, 115, 5678. 
(104) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; 
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. 
A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; 
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. 
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; 
Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; 
Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, 
W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, 
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; 
Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, 
M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, 
T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; 
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, 
M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, 
K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision B.01; 
Gaussian Inc: Wallingford CT, 2016. 
(105) Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: 
Comput. Mol. Sci. 2012, 2, 73. 

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article 

https://doi.org/10.1021/acs.jctc.2c00484 
J. Chem. Theory Comput. 2022, 18, 7243−7259 

7257 

https://doi.org/10.1021/bi051655l?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi051655l?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.2339019
https://doi.org/10.1063/1.2339019
https://doi.org/10.1016/j.cplett.2010.08.033
https://doi.org/10.1016/j.cplett.2010.08.033
https://doi.org/10.1063/1.3560026
https://doi.org/10.1063/1.3560026
https://doi.org/10.1063/1.3560026
https://doi.org/10.1063/1.4742816
https://doi.org/10.1063/1.4742816
https://doi.org/10.1063/1.4742816
https://doi.org/10.1021/ct200783n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200783n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200783n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar500038z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar500038z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar500038z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp811519x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr500606e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr500606e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr500455b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr500455b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/c2cp23832b
https://doi.org/10.1039/c2cp23832b
https://doi.org/10.1038/srep14358
https://doi.org/10.1038/srep14358
https://doi.org/10.1038/srep14358
https://doi.org/10.1038/srep14358
https://doi.org/10.1063/1.4816280
https://doi.org/10.1063/1.4816280
https://doi.org/10.1021/acs.chemrev.5b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.5b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz101383z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz101383z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3609922
https://doi.org/10.1063/1.3609922
https://doi.org/10.1063/1.3609922
https://doi.org/10.1021/acs.jctc.7b00149?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00149?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5126216
https://doi.org/10.1063/1.5126216
https://doi.org/10.1039/dc9776200092
https://doi.org/10.1039/dc9776200092
https://doi.org/10.1063/1.452463
https://doi.org/10.1063/1.452463
https://doi.org/10.1080/00268978800101451
https://doi.org/10.1080/00268978800101451
https://doi.org/10.1080/00268978800101451
https://doi.org/10.1080/00268978800101451
https://doi.org/10.1080/00268978800101451
https://doi.org/10.1063/1.460197
https://doi.org/10.1063/1.460197
https://doi.org/10.1063/1.460197
https://doi.org/10.1063/1.466846
https://doi.org/10.1063/1.466846
https://doi.org/10.1021/ct600253j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600253j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600253j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3021077
https://doi.org/10.1063/1.3021077
https://doi.org/10.1063/1.3021077
https://doi.org/10.1063/1.4759079
https://doi.org/10.1063/1.4759079
https://doi.org/10.1126/science.1254419
https://doi.org/10.1126/science.1254419
https://doi.org/10.1021/acs.chemrev.5b00644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.5b00644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4999905
https://doi.org/10.1063/1.4999905
https://doi.org/10.1063/1.4999905
https://doi.org/10.1063/1.4979601
https://doi.org/10.1063/1.4979601
https://doi.org/10.1063/1.4979601
https://doi.org/10.1063/1.4973380
https://doi.org/10.1063/1.4973380
https://doi.org/10.1002/jcc.540160911
https://doi.org/10.1002/jcc.540160911
https://doi.org/10.1002/jcc.540160911
https://doi.org/10.1021/jp962071j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp962071j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp962071j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp962071j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/s0009-2614(02)00210-5
https://doi.org/10.1016/s0009-2614(02)00210-5
https://doi.org/10.1002/wcms.85
https://doi.org/10.1002/wcms.85
https://doi.org/10.1002/wcms.85
https://doi.org/10.1021/cr5004419?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.81
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00484?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(106) Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; 
DePrince, A. E., III; Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di 
Remigio, R.; Richard, R. M.; Gonthier, J. F.; James, A. M.; 
McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X.; Pritchard, B. 
P.; Verma, V.; Schaefer, H. F., III; Patkowski, K.; King, R. A.; Valeev, E. 
F.; Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. 
PSI4 1.1: An Open-Source Electronic Structure Program Emphasizing 
Automation, Advanced Libraries, and Interoperability. J. Chem. Theory 
Comput. 2017, 13, 3185. 
(107) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; 
Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; 
Dal Corso, A. D.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; 
Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, 
L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; 
Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; 
Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM 
ESPRESSO: a modular and open-source software project for quantum 
simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502. 
(108) Ozaki, T.; Kino, H.; Yu, J.; Han, M.; Ohfuchi, M.; Ishii, F.; 
Sawada, K.; Ohwaki, T.; Weng, H.; Toyoda, M.; Okuno, Y.; Perez, R.; 
Bell, P.; Xiao, Y.; Ito, A.; Terakura, K. User’s Manual of OpenMX Ver. 3.8, 
2016. 
(109) Dey, T. K.; Shah, N. R. On the number of simplicial complexes 
in Rd. Comput. Geom. 1997, 8, 267. 
(110) Adams, C. C.; Franzosa, R. D. Introduction to Topology: Pure and 
Applied; Pearson, 2008. 
(111) Berger, M.; Pansu, P.; Berry, J.-P.; Saint-Raymond, X. Affine 
spaces. Problems in Geometry; Springer, 1984; p 11. 
(112) Moon, J. W.; Moser, L. On cliques in graphs. Isr. J. Math. 1965, 
3, 23−28. 
(113) Balas, E.; Yu, C. S. Finding a maximum clique in an arbitrary 
graph. SIAM J. Comput. 1986, 15, 1054−1068. 
(114) Campbell, J. E. On a Law of Combination of Operators (Second 
Paper) *. Proc. London Math. Soc. 1897, s1−29, 14−32. 
(115) Baker, H. F. Further Applications of Metrix Notation to 
Integration Problems. Proc. London Math. Soc. 1901, s1−34, 347−360. 
(116) Eichler, M. A new proof of the Baker-Campbell-Hausdorff 
formula. J. Math. Soc. Jpn. 1968, 20, 23−25. 
(117) Trotter, M. F. On the Product of Semi-Groups of Operators. 
Proc. Am. Math. Soc. 1959, 10, 545. 
(118) Nelson, E. Feynman Integrals and the Schrödinger Equation. J. 
Math. Phys. 1964, 5, 332. 
(119) Otto, F. Multi-layer Potfit: An accurate potential representation 
for efficient high-dimensional quantum dynamics. J. Chem. Phys. 2014, 
140, 014106. 
(120) Wodraszka, R.; Carrington, T. Systematically expanding 
nondirect product bases within the pruned multi-configuration time-
dependent Hartree (MCTDH) method: A comparison with multi-layer 
MCTDH. J. Chem. Phys. 2017, 146, 194105. 
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