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ABSTRACT: We present a graph theoretic approach to 
adaptively compute contributions from many-body approximations 
in an efficient manner and perform accurate hybrid density 
functional theory (DFT) electronic structure calculations for 
condensed-phase systems. The salient features of the approach are 
ONIOM-like. (a) The full-system calculation is performed at a 
lower level of theory (pure DFT) by enforcing periodic boundary 
conditions. (b) This treatment is then improved through a 
correction term that captures many-body interactions up to any 
given order within a higher (in this case, hybrid DFT) level of 
theory. (c) In the spirit of ONIOM, contributions from the many-
body approximations that arise from the higher level of theory [i.e., from (b) above] are included through extrapolation from the 
lower level calculation. The approach is implemented in a general, system-independent, fashion using the graph-theoretic 
functionalities available within Python. For example, the individual one-body components within the unit cell are designated as 
“nodes” within a graph. The interactions between these nodes are captured through edges, faces, tetrahedrons, and so forth, thus 
building a many-body interaction hierarchy. Electronic energy extrapolation contributions from all of these geometric entities are 
included within the above-mentioned ONIOM paradigm. The implementation of the method simultaneously uses multiple 
electronic structure packages. Here, for example, we present results which use both the Gaussian suite of electronic structure 
programs and the Quantum ESPRESSO program within a single calculation. Thus, the method integrates both plane-wave basis 
functions and atom-centered basis functions within a single structure calculation. The method is demonstrated for a range of 
condensed-phase problems for computing (i) hybrid DFT energies for condensed-phase systems at pure DFT cost and (ii) large, 
triple-zeta, multiply polarized, and diffuse atom-centered basis-set energies at computational costs commensurate with much smaller 
sets of basis functions. The methods are demonstrated through calculations performed on (a) homogeneous water surfaces as well as 
heterogeneous surfaces that contain organic solutes studied using two-dimensional periodic boundary conditions and (b) bulk 
simulations of water enforced through three-dimensional periodic boundary conditions. A range of structures are considered, and in 
all cases, the results are in good agreement with those obtained using large atom-centered basis and hybrid DFT calculations on the 
full periodic systems at significantly lower cost. 

1. INTRODUCTION

Condensed-phase reactive systems are of significant interest in a 
wide range of chemical and material problems.1−4 There has also 
been substantial effort directed toward gauging the reasons 
behind the relatively high efficiency of organic reactions on the 
surface of water droplets and interfaces.5−10 At the core of all 
these important studies is the accurate determination of 
electronic properties for periodic condensed-phase sys-
tems.11−16 There have been several studies11,12,14,15,17−19 that 
attempt to expand the application of forefront electronic 
structure methods to the condensed phase. These studies 
include bulk systems,20−25 surfaces,26−28 and one-dimensional 
chains.29−31 Yet, as of today, there is a disconnect between the 
quality of electronic structure methods and basis sets routinely 
available for the study of both finite-sized clusters and those 

available to study condensed-phase, periodic systems. For 
example, there exists a hierarchy of accurate density functional 
approaches for cluster-like studies, where hybrid functionals 
(the so-called rung-4 functionals32−34) and the more advanced 
double-hybrid functionals35−37 are at the core of many 
successful studies.34 However, these methods become cata-
strophically expensive when applied to condensed-phase 
systems. Furthermore, there exists a range of high-quality basis 
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sets that are routinely available for the study of isolated systems 
as well as systems embedded in continuum, yet these become 
computationally intractable for condensed-phase problems. The 
situation becomes worse for ab initio molecular dynamics 
studies38,39 and quantum nuclear studies40 in the condensed 
phase. In these cases, both the number of electronic structure 
calculations and quality of each such calculation affect the overall 
cost. In the condensed phase, this scaling problem is 
compounded by the use of (a) k-integration (reciprocal space 
sampling) for periodic systems, (b) diffuse and extended basis 
functions, and (c) nonlocal exchange−correlation functionals 
that are implicit within the higher rung density func-
tionals.12,39,41−44 As a result, accurate density functionals are 
cost prohibitive to use for routine periodic system studies with k-
integration. The accurate modeling of reactivity, adsorption of 
substrates on surfaces, and surface defects are drastically affected 
by these limitations. Figure 1 briefly summarizes these 
challenges with additional complementary data provided in 
Supporting Information, Figures SI-1 and SI-2. 
Apart from computational costs, atom-centered basis sets 

containing diffuse functions adapted to Bloch symmetry also 
suffer from numerical instabilities when k-integration12 is 
included. Although homogeneous surfaces may not, in general, 
need large basis functions, surfaces with adsorbates and defects 
involve local electronic effects that are best captured through 
high-quality basis sets and through appropriate choice of k-

mesh. A variety of methods have been developed to alleviate the 
steep scaling and numerical instabilities in periodic electronic 
structure calculations,11,12,53−57 yet condensed-phase calcula-
tions always involve a trade-off between choice of basis set and 
computational complexity, with most production calculations 
conducted within the Γ-point approximation for reciprocal 
space sampling. While the inclusion of diffuse functions allows a 
better representation of weak nonbonded interactions, these 
calculations also often suffer from linear dependencies of basis 
functions and SCF convergence instabilities with accompanying 
significant increase in the numerical cost. 
In this publication, we present an efficient approach to 

perform accurate electronic structure calculations for extended 
systems in agreement with hybrid (rung-4) functionals such as 
B3LYP,58 CAM-B3LYP,59 TPSSh,60 and PBE061 at computa-
tional costs that are commensurate with semilocal (rung-2 and 
rung-3) functionals such as BLYP,62 PBE,63 and revTPSS.64 

Numerical demonstrations are conducted including both plane-
wave basis functions as well as atom-centered basis functions 
adapted to Bloch symmetry. Furthermore, we also present 
results accurate to high-quality basis sets, such as 6-311+ 
+G(2df,pd) for periodic systems (i.e., adapted to Bloch 
symmetry), at numerical effort commensurate with moderate 
basis sets such as 6-31+G(d). These studies are conducted for 
three-dimensional bulk water problems as well as surfaces of 
water with adsorbates. 

Figure 1. (a) Computational scaling for condensed-phase treatment of water using three-dimensional periodic boundary conditions: PBE functional 
with plane-wave basis set and a kinetic energy cutoff of 50 Rydberg using the Quantum ESPRESSO package.45 (b) Computational scaling of the hybrid 
PBE0 functional, using the Kresse−Joubert style projected augmented wave treatment,46,47 for the bulk 6 water unit cell system. (c) Computational 
scaling of the hybrid B3LYP functional, using a norm-conserving pseudopotential,48,49 for the bulk 6 water unit cell system. Both for the hybrid 
functionals, the scaling costs, with k-points and unit cell size, are significantly higher than their parent functionals (see SI-1 for BLYP scaling in the 
plane-wave basis). (d) Convergence of the lattice energy with increasing k-mesh density, the effect of the k-points on lattice energy error decreases with 
the increase in unit cell size. The systems with unit cells containing 6, 12, and 24 water molecules have acceptable accuracy beyond the k-mesh of 23, 
whereas the 48 and 72 water unit cell systems appear to be well represented by the Γ-point mesh. Note that the 72 water unit cell results are compared 
against the 33 k-mesh because the 43 k-mesh is computationally too expensive to perform for the larger unit cell. (e,f) Similar to (d), but for the hybrid 
PBE0 and B3LYP functionals for the bulk 6 water unit cell system, corresponding to the scaling (b,c). (e,f) Similar convergence with k-mesh as in (d). 
However, the computational scaling with the increase in k-points is cost prohibitive for larger unit-cell sizes. It has been shown that hybrid DFT 
functionals demonstrate similar convergence with k-points as pure DFT;50−52 thus, we use (e,f) to argue the k-point convergence of hybrid functionals 
to be the same as the pure functional in (d) for the larger unit cells. Panels (a−f) are in logarithmic scale. More details are in Supporting Information, 
Figures SI-1 and SI-2. The structures used in this study are described in Section 3.2 with more details found in the Supporting Information. One critical 
contribution from this paper is to make hybrid (and higher rung) calculations efficient and accurate for homogeneous and heterogeneous condensed-
phase systems and surfaces. 
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Our approach is based on ONIOM.65−67 Here, the full system 
is treated using a low-level (pure density functional and/or lower 
quality basis) periodic calculation using either plane-wave basis 
functions or Bloch symmetry-adapted atom-centered Gaussian 
basis functions. In ONIOM-style, this calculation is corrected 
through “model” calculations that are now obtained from many-
body expansions68−72 computed through a graph-theoretic 
formalism. Thus, the “model” calculations are obtained from a 
graphical decomposition of a molecular cluster embedded 
within the full periodic system. In the studies shown here, the 
molecular structure contains the elements within a single unit 
cell, where higher level (basis set and density functional) 
corrections are computed based on the graphical decomposition 
and these perturbatively improve upon the periodic low-level 
calculation. In this approach, the overall energy (and gradients) 
for the condensed-phase system are constructed using multiple 
independent calculations. These include the full-system low-
level periodic calculation and the molecular fragments obtained 
from the graphical decomposition. Our hybrid C++/Python-
based computational implementation allows the use of multiple 
electronic structure packages for these individual segments. In 
this paper, we have used Gaussian73 as well as Quantum 
ESPRESSO45 for the periodic full-system calculation, where the 
former has allowed the use of a very large number of k-points; 
the molecular  fragments that depict local  many-body  
interactions are obtained from graphical decomposition and 
processed using Gaussian. In general, the computer programs 
developed here are able to use Gaussian, Psi4, Orca, OpenMX, 
and Quantum ESPRESSO simultaneously through our code for 
a single electronic structure, AIMD, and potential energy surface 
step.74−80 Following along similar lines as ref 79, the many-body 
decomposition of the “model” system in the ONIOM formalism 
is presented using the graph theory. This idea provides the 
following computational advantages. The graph theory libraries 
in Python are extremely well refined and robust and allow for 
implementation of a completely general partitioning scheme. As 
a result, the many-body decomposition is adaptive and system 
independent. One-body (nodes within the graph), two-body 
(edges), three-body (triangles), four-body (tetrahedrons), and 
larger order interactions are easily constructed for any system 
using the appropriate set of Python libraries once the graphical 
representation of the molecular system is created. In this paper, 
we also demonstrate the convergence of our approach with 
increasing order of many-body terms. 
Although the approach is based on ONIOM,65−67 it is also 

deeply connected to other molecular fragmentation methods 
previously developed by our group74−79 and by others81−88 

within the rich molecular fragmentation literature89−98 and is 
also connected to many-body methods.68−72,93,99−101 In this 
sense, the approach is deeply connected with the work in refs 81, 
84, and 86, all of which have similar conceptual underpinnings. 
The effectiveness of methods involving many-body expansions 
(MBE)68,93,99−102 and the related idea of molecular fragmenta-
tion67,74−78,81−84,89−92,94,97,103−113 have been extensively dem-
onstrated for molecular cluster calculations. These are known to 
remedy the intractability of correlation and extended basis-set 
effects especially for AIMD studies74,75,77,78,96,114−118 and for 
molecular potential surfaces.79,119 Similarly MBE and fragmen-
tation-based methods have been employed for condensed-phase 
calculations.16,18,106,120 In these methods, local quantum 
mechanical treatments correct long-range periodic interactions, 
where the latter are considered through (a) embedded 
charges,106,120−129 (b) advanced molecular mechanics, using 

predetermined or polarizable force fields,88,130−133 or (c), as it is 
done in this paper, condensed-phase calculations with HF or 
density functional theory (DFT) treatments.86,134−138 Many of 
these methods are based upon, or closely related to, MBEs 68−72 

which have been a work-horse in the study of both gas-phase 
clusters and condensed-phase systems. 
We demonstrate our method for thin films of water/ice, 

considered  because  of  potential  catalyt ic  s ignifi-
cance.5,6,8,10,139,140 We consider a range of molecular geometries 
for each case, and these include both stable (equilibrium) 
structures as well as those that may be encountered during 
dynamics studies (and may hence be farther from equilibrium) 
to gauge the accuracy of the proposed methods. At the end, we 
find the proposed approach to be capable of providing energies 
in agreement with hybrid functionals (rung-4) and large atom-
centered basis-set calculations, at the accuracy of the order of 
fractions of kcal/mol at much reduced computational cost. 
The paper is organized as follows: In Section 2, we present our 

graph-theoretic approach to low-cost condensed-phase calcu-
lations. In Section 3.2, we discuss the systems used in our 
benchmarks, and these are further expounded upon in 
Supporting Information Section SI-1. Many-body or graph-
theoretic rank dependence of accuracy is discussed in Section 
4.1 and further substantiated by the Supporting Information. 
The results from our benchmark studies are presented in Section 
5 and again complemented by the Supporting Information. 
Conclusions are given in Section 6. 

2. LOW-COST, ACCURATE TREATMENT OF 
CONDENSED-PHASE ELECTRONIC STRUCTURES 
THROUGH GRAPH-THEORETIC DECOMPOSITION 
OF MOLECULAR STRUCTURES 

In  recent  years ,  molecular  f ragmentat ion  meth-
ods 81−85,87,89−91,93−96,99−101,104,106,107,110,113,138,141−149 and 
generalized approaches to the well-known many-body 
theory68,69,71,72,93,99−102 have emerged as powerful alternatives 
to alleviate the critical scaling problem of post-Hartree−Fock 
methods and large basis-set calculations. There have been 
several efforts where the long-range effects in condensed-phase 
systems are treated in an empirical fashion, with the real-space, 
local finite portions of the full system being treated using higher 
levels of theory.120−128,132,133 More recently there has been an 
increased focus on fragmentation studies that have included 
nonempirical treatments of long-range effects in the condensed 
phase to obtain post-Hartree−Fock or hybrid DFT levels of 
accuracy.86,134−138 To allow accurate and efficient hybrid DFT 
simulations of the same, the central contribution of this paper is 
the introduction of long-range, condensed-phase, periodic 
interactions at a lower level of theory (such as semilocal, rung-
2, DFT functionals using smaller basis sets), with the 
perturbative introduction of higher levels of theory (rung-4, 
hybrid density functionals) and larger basis sets using local 
MBEs that are obtained from graph theory. In this manner, local 
defects, reactive effects, and adsorption properties will be treated 
at the necessary higher level of electronic structure and larger 
basis, whereas long-range periodic effects are considered 
through an ONIOM-like extrapolation procedure. The 
approach is benchmarked later in the publication for both 
homogeneous (bulk water and water surfaces) as well as 
heterogeneous (surfaces with adsorbates) systems, where we 
expect the latter to be particularly challenging tests for our 
model. Hence, to use the relevant ONIOM terminology, the 
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“model” perturbation to the “real” calculation is obtained using a 
graph-theoretic tool to efficiently include many-body inter-
actions up to any given order. Thus, the central approximation in 
this work may be captured by a perturbative correction to the 
overall energy of a periodic system that is given by 

= + χ 
‐E E EPBC 

graph theoretic 
PBC 
level,0 

(1) 

Here, EPBC 
level,0 refers to the periodic treatment of the system 

alluded to above, at some lower level of theory and basis together 
referred to as “level, 0”. The quantity Eχ is an ONIOM-like 
correction term65−67 obtained here from a graph theoretic 
decomposition of the molecular structure that, as we will show, 
captures the accuracy at higher levels of theory and basis sets. In 
this paper, the region of chemical interest is discretized as a set of 
geometric nodes that represent localized molecular fragments. 
These nodes are then connected to form a network or a graph. 
The connections between nodes, represented by edges, faces, 
and other higher-order objects referred to as simplexes in the 
graph, capture local (bonded and nonbonded) as well as 
nonlocal (nonbonded) many-body interactions. Such a geo-
metrical decomposition is shown in Figure 2. Furthermore, the 
graph in Figure 2 has an associated topological invariance known 
as an Euler characteristic,150 χ, defined below in eq 2, and guides 
our definition of Eχ in eq 1 

9 
9 
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Here, ηr represents the number of geometric entities (nodes, 
edges, faces, and higher-order simplexes) of rank-r. That is, η0 is 
the number of nodes (rank-0 simplexes) in the graph, η1 is the 
number of edges (rank-1 simplexes) in the graph, η2 is the 
number of faces (rank-2 simplexes) in the graph, and so 
on.150−152 The quantity 9 is the largest simplex rank included in 
the truncated expansion on the right side of eq 2, which in 
general can go up to arbitrary orders. 
In this publication, we replace the appearance of each rank-r 

simplex in eq 2, numbered using the index α, by an energy 
correction corresponding to the molecular interactions captured 
by the specific simplex, and thus 
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where the summation over α is over all rank-r simplexes and 
ΔE(α,r) is an ONIOM-like energy correction or extrapolation 
term added to EPBC 

level,0 (see eq 1) for the α-th rank-r simplex

α α αΔ = −E r E r E r( , )  ( , ) ( , )level,1 level,0 (4) 

Thus, in ONIOM-style, the electronic energy for the α-th 
rank-r simplex (representing a molecular fragment in the 
system) is computed at two levels of theory, namely, “level, 1” 
and “level, 0”. (Note that the periodic calculation in eq 1 is 
performed at “level, 0”.) The square bracketed term in eq 3 
contains an overcounting correction.77,78 The overcounting 
correction, pα 

r,m , refers to the number of times the αth rank-r 
simplex appears in all rank-m simplexes (m ≥ r), with phase 
(−1)m. Correspondingly, in eq 1, the energy correction Eχ 
represents the accumulation of the measures for each simplex. 
In light of the topological invariant, χ, from eq 2 and the map in 
eq 3, the expression for Eχ is 
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The curly bracketed term, { }, refers to the energetic 
replacement for each rank-r simplex, that is, ηr in eq 2, as per eq 
3. In  Section 2.1, we show that Eχ can also be regarded as a 
difference in many-body expansions. As it is shown, the over-
counting correction, pα

r,m, is along similar lines as those present 
in many-body and double many-body expansions68,93,99−101 and 
molecular fragmentation.67,82,84,89,91,94,95,101,104,110,116,146 With-
in the many-body paradigm, pα

r,m is the count of the number of 
times the αth (r + 1)-body term appears in all (m + 1)-body 
terms. 
When eq 5 expression is incorporated into the approximation 

of a periodic system energy given by eq 1, the graph-theoretic 
energy expression77 for a periodic system may be written as 
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This expression, as one can see, is deeply influenced by 
ONIOM where the “model” system now has a more complex 
structure as compared to the traditional model. However, as 
discussed in ref 79, this structure also provides the basis to obtain 

Figure 2. Basic idea of the method arising from eq 1 (and later from eqs 6 and 14) is illustrated through a periodic slab of water, with a highlighted 
cluster. The periodic nature of the problem is captured by EPBC 

level,0 . Additional correlation, exchange, and large basis-set effects are perturbatively included 
for the highlighted subsystem through Eχ defined in eq 5 using the graphical network depiction of (a) in (b). The systems considered in this paper are 
discretized into nodes which represent single water and adsorbate molecules. 
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general potential energy surfaces where the graphs change (and 
the corresponding topological properties in eq 3 change) as 
nuclei evolve. 
As noted above, “α” represents a simplex151,152 of rank-r and 

9 is the largest simplex rank (maximum order of many-body 
interactions as we see below) considered for electronic structure 
treatment. The availability of larger rank simplexes is highly 
dependent on the topology of the graph representation of the 
system. The number of available edges surrounding any given 
node in turn depends on the local proximity of these groups; this 
proximity is governed by a distance cutoff which is discussed in 
Section 4. The mutual proximity of these nodes influences the 
extent to which, as we will see in the next subsection, many-body 
approximations contribute to Eχ. Thus, in Section 4.1, the choice 
of 9 is examined with respect to accuracy of eq 6, with more 
details in the Supporting Information. These studies in Sections 
4.1 and SI-2 are further strengthened by varying the allowed 
edge lengths (or two-body interactions as we will see in Section 

2.1 below) within the graph in conjunction with the maximum 
simplex rank (or many-body interaction, as will be seen from 
Section 2.1). 

2.1. Relation between Equation 6 and Standard Many-
Body Expansions. One may clearly see the connections 
between eq 6 and the well-known many-body expansions 
(MBE)68,93,99−101 by simply writing out the appropriate form of 
eq 6 for 9 = 1 
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where, now, pα
0,1 is the number of times the node α (one-body 

term) appears in all edges (or two-body interactions) and pα 
0,0 is 

the number of times node α appears in all nodes and by 
extension pα

0,0 = 1. Using eq 4, we may further rewrite eq 7 as 
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Here, we have grouped terms belonging to level, 1 and level, 0 
separately. The terms inside each of the curly brackets, { }, are 
the level, 1 (or level, 0) two-body energies. These are specifically 
written as a one-body term which sums over all nodes 

∑ α≡ 
α 

‐
∈ 

E E ( ,  0)1 body  
level,1 

nodes 

level,1 

(10) 

and similarly for level, 0. The two-body correction term is 
captured within the square-bracketed terms, [ ], in eq 9, having 
the form 
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(11) 

Thus, the two-body correction term has the form of energy 
contribution arising from two-body calculations (edges) minus 
each one-body contributions times number of times the one-
body term (node) appears inside all two-body terms, (pα 

0,1). 
Thus, we may rewrite the expression above as 
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(12) 

It is clear that the ONIOM-style extrapolation now applies in 
eq 12 in a many-body context. However, eq 6 includes many-
body contributions to arbitrary orders. This can be seen by 
constructing a similar n-body analysis for eq 6, and for three-
body interactions (faces), one may use 9 = 2 in eq 6 to obtain 
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It is clear from eqs 12 and 13 that eq 6 provides an ONIOM-
type extrapolation approximation (“ high” minus “low” or level, 
1 minus level, 0) where the “high” and “low” levels are 
themselves many-body approximations 

9 9 9= + − ‐E E E E PBC, 
graph theoretic 

PBC 
level,0 

MBE, 
level,1 

MBE, 
level,0 

(14) 

where 9 EMBE, 
level,1 (and similarly 9EMBE, 

level,0 ) is many-body expansion of 
order 9 . Thus, eq 6 (and correspondingly eq 14) provides an 
adaptive recipe to compute interactions to arbitrary orders 
through an efficient graph-theoretic decomposition. The 
generality of the approach is strongly dependent on the Python 
implementation of eqs 6 and 14, which provides a robust 
medium containing a rich set of functionalities for graph-
theoretic studies. 
A critical reason why eq 14 works out from eq 6 is because for 

higher rank simplexes (up to rank 9) our graph-theoretic 
formalism is strongly influenced by the fact that simplexes are 
closed convex hulls.151,152 Thus, a higher rank simplex is one 
that includes within it all component, lower-rank, simplexes. For 
instance, a rank-2 simplex, a triangle, contains all three edges, 
that is, rank-1 simplexes (consistent with the envelope protocols 
above) and a rank-3 simplex, tetrahedron, includes within all 
four of its component triangles (rank-2 simplexes). These 
prescriptions directly follow from the fact that simplexes are 
closed convex hulls and the edges of any rank-r simplex are 
affinely independent.153 Thus, algebraically speaking, a rank-r 
simplex, is constructed from the family linearly independent 
rank-1 simplexes (edges), {ui} as  

∑ λ= 
=

S ur 
i 

r 

i i 
0 (15) 

where ∑i=0
r λi = 1 and λi ≥ 0. Therefore, higher-order terms (up 

to rank 9) are automatically included when the monomers are 
mutual “neighbors” within the graph. This implies that the 
choice of the spatial envelope is a means of controlling the 
maximum rank object considered. This requirement of 
simplexes being convex hulls is the single main constraint in 

the algorithm that maps our approach to many-body theory as 
seen above. The absence of this computational restriction will 
allow including higher-order many-body interactions that do not 
then properly cancel the lower-body contributions and are 
inconsistent with the set-theoretic inclusion exclusion princi-
ple.74,154 Furthermore, eqs 6 and 14, due to their ONIOM 
underpinnings, introduce a difference in rank-9 many-body 
contributions computed from two levels of theory and basis. 
Through this approach, the higher rank many-body interactions 
are already included through EPBC 

level,0 . It must be noted that this is
also the essence of the HMBI method from Beran and co-
workers,147 where the supersystem many-body terms beyond a 
certain order are either treated using polarizable force-
fields131,155−159 or more recently using Hartree−Fock.86,129,160 
Here, we have presented the application of our graph-

theoretic interpretation 77−79 in eqs 6 and 14 to reduce the costs 
and instabilities in condensed-phase calculations, while 
presenting a completely adaptive scheme that is suited for ab 
initio dynamics and computing molecular potential surfaces as 
evidenced by refs 74 and 79. As noted in eq 6, this is done by 
capturing local interactions incorporated into the graphical 
representation (in this case the unit cell, see Figure 2a,b) with 
large basis sets containing higher-order diffuse and polarized 
basis functions, while modeling the bulk properties with lower 
quality, computationally less expensive basis sets. Similarly, we 
also captured local many-body interactions within the molecular 
fragments with hybrid and other higher rung DFT functionals, 
while modeling the long-range, periodic interactions with the 
more localized “pure” functionals. For both condensed-phase 
and cluster calculations, the many-body effects are already 
treated at a base electronic structure level, and only corrections 
from this base level are computed using the difference in eq 5 to 
obtain eq 14. When considering condensed-phase systems, local 
interactions between the constituents of the unit cell and the 
periodic, condensed phase are both critical aspects to under-
standing the physics of the system. 
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3. CONDENSED-PHASE SYSTEMS CONSIDERED AND 
THE ASSOCIATED DISCUSSION OF RANK 
DEPENDENCE ON ACCURACY 

The systems considered in this paper are both homogeneous as 
well as more challenging heterogeneous systems. These include 
three-dimensional periodic bulk water, two-dimensional peri-
odic thin films of water, and adsorbate molecules, H2, methane, 
and methanol bound to the surface of water films. The accuracy 
and efficiency of the aforementioned graph-theoretic approx-
imations from eq 6 are gauged toward computation of higher 
rung DFT and large, diffused, polarized, and split-valence atom-
centered basis-set description of condensed-phase problems. 
The latter may especially be important for the surface adsorption 
studies. 
In Section 3.1, we discuss the computational implementation 

of our studies and also clarify the notation used in the paper. 
Section 3.2 introduces the library of structures used in the 
benchmarks with more details in the Supporting Information. 
3.1. Computational Aspects. Our implementation of eq 6, 

through an MPI parallelized hybrid C++/Python module, is 
capable of using multiple electronic structure packages within a 
single AIMD step and isolated electronic structure calculations 
conducted during potential surface evaluations.79 The code 
currently supports the following set of external electronic 
structure packages during a single energy and gradient 

evaluation: Gaussian,73 ORCA,161 Psi4,162 Quantum ESPRES-
SO,45 and OpenMX.163 

The main components of eq 6, the full-system low-level 
energy, EPBC 

level,0 , and the fragment energies, {Elevel,1(α,r);
Elevel,0(α,r)}, are independent and can be performed simulta-
neously without constraints on the electronic structure package 
used. This is precisely what is done here, and in the analogous 
molecular cluster studies in refs 77 and 78. In this publication, 
we have used both the Gaussian series of electronic structure 
programs73 (using atom-centered basis sets, with and without 
Bloch symmetry enforced for periodic boundary conditions) 
and Quantum ESPRESSO45 (using plane waves with 
pseudopotentials) to compute the various energy terms in eq 
6. The low-level full-system energies, EPBC 

level,0 , are computed here
using both electronic structure packages. This allows the 
detailed evaluation of our method for applications using both 
plane-wave basis functions (with pseudopotentials) and all-
electron atom-centered basis functions adapted to Bloch 
symmetry.12 The fragment energies, {Elevel,1 (α,r); Elevel,0 (α,r)},
in all cases are computed here using Gaussian-basis cluster 
calculations. Specifically, we demonstrate the implementation of 
eq 6 with the condensed-phase contribution, EPBC 

level,0 , treated with
pure DFT using either atom-centered73 and using plane-wave45 

basis sets. As required by eq 6, these energies are then corrected 
by the differences in local many-body interactions (see eq 14) 
that are obtained from atom-centered basis function calcu-

Table 1. Systems and Configurations for Condensed Systems with Two- and Three-Dimensional Periodic Boundary Conditionsa 

unit cell composition condensed-phase system number of structures energyb spread meanc deviation k graph‑theoretic 
d k hybrid‑DFT 

e 

Optimized at BLYP/6-31+G(d) 
(H2O)6 gas phase 15 3.7 7.7 
(H2O)12 2D surface 42 10.8 22.1 71 ± 28 285 ± 108 
(H2O)24 2D surface 19 19.6 30.3 43 ± 17 191 ± 54 
(H2O)6 3D bulk 15 4.8 9.8 228 ± 46 5944 ± 668 

Optimized at PBEf (50 Ry) 
(H2O)6 3D bulk 15 4.7 9.3 8 8 
(H2O)12 3D bulk 30 9.4 19.0 8 8 
(H2O)24 3D bulk 32 18.0 37.0 1 1 
(H2O)48 3D bulk 14 (24)g 20.1 66.2 1 1 

aMore details can be found in Supporting Information, Figures SI-5, 6, 8 and Table SI-I with discussion in Section SI-I. bStandard deviation of the 
electronic energies (in kcal/mol) at BLYP/6-31+G(d) for the structures in the top block of data. Bottom block: structures optimized with PBE with 
the Kresse−Joubert style pseudopotential 47 and 50 Ry cutoff for plane waves. 45 Energy distribution of these structures is shown in detail in Figure 
SI-5, 6, and 8. cDeviation of the mean energy of the conformational population from the lowest energy configuration within the respective datasets. 
A detailed distribution is provided in Figures SI-5, 6, and 8. dThe quantity kgraph‑theoretic refers to the number of k-space sampling points needed to 
compute EPBC 

level,0 in eq 6. In our study, semilocal DFT functionals were used for level, 0 calculations, to extrapolate to level, 1 that was generally 
hybrid DFT. Hence, in these cases, the choice of semilocal DFT functionals dictate the number of k-points. Average and Standard deviations are 
presented. eNumber of k-space sampling points needed during the higher level periodic calculations in Section 5. Average and standard deviations 
are presented. fProjector-augmented wave (PAW) representation46 with the Kresse−Joubert style pseudopotential.47 gNumber of structures 
sampled from AIMD simulations are shown within parenthesis. The number outside parenthesis is the number obtained from geometry 
optimization. See Figure SI-6e. 

Table 2. Systems and Configurations Considered for Adsorbate Systems 

unit cell composition condensed-phasesystem number of structures energya spread meanb deviation k graph‑theoretic 
c k hybrid‑DFT 

d 

(H2O)24·H2 2D surface with adsorbate 39 (13)e 35.6 53.9 33 ± 15 161 ± 57 
(H2O)24·CH4 2D surface with adsorbate 44 (13)e 28.7 52.5 32 ± 14 166 ± 48 
(H2O)24·CH3OH 2D surface with adsorbate 32 (13)e 29.1 57.0 27 ± 7 154 ± 33 

aStandard deviation of the electronic energies at revTPSS/6-31+G(d) (in kcal/mol). bDeviation of the mean energy from the lowest energy 
configuration within the respective data-sets, at revTPSS/6-31+G(d) (in kcal/mol). cNumber of k-space sampling points needed for EPBC 

level,0 . In our 
study, semilocal DFT functionals were used for level, 0 and hence dictate the number of k-points in this case. Average and standard deviations are 
presented. dNumber of k-space sampling points needed during the higher level periodic calculations in Section 5. Average and standard deviations 
are noted. eNumber of structures sampled from AIMD are shown within parenthesis. The number outside parenthesis is the number obtained from 
geometry optimization. See Figure SI-12. 
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lations. Thus, in part, we also provide an approach to correct 
plane-wave results with higher level of theory, including higher 
rung DFT treatment. 
Ab initio treatment of periodic systems requires an 

appropriate choice of k-point sampling. The k-mesh chosen 
for the atom-centered basis treatment of each system was 
automatically generated as part of the Gaussian electronic 
structure calculations.73 This was done based on the relative size 
of the reciprocal space, thus leading to fewer required k-points 
with the increase in lengths of the respective translation 
vectors.11,164 In contrast, when using Quantum ESPRESSO, 
the number of k-points was determined by the lattice energy 
convergence tests in Figure 1. Additionally, our calculations with 
atom-centered bases in the condensed phase used the methods 
described in refs 11 and 12 which allowed the expansion of k-
point mesh without significantly increasing the overall computa-
tional costs. The k-point sampling chosen for each of the set of 
systems considered is shown in Tables 1 and 2 below. It is also 
clear from Table 1 that for the use of atom-centered basis 
functions there are far fewer number of k-points necessary in 
energies with pure DFT functionals as compared to the case for 
hybrid functionals. In addition, the use of Bloch symmetrized 
atom-centered basis functions, to compute EPBC 

level,0 , allows the
flexibility to not require periodic boundary conditions to be 
enforced in all directions, which allows for a lower dimensional 
k-mesh. This is especially important for surface adsorption 
problems, as the addition of periodic boundary and k-integration 
through the vacuum leads to significant computational costs. 
Furthermore, we have used atom-centered diffuse basis 
functions in periodic calculations. In most condensed matter 
studies, smaller basis sets are generally used because (a) the cost 
of using diffuse functions can be prohibitive and (b) the periodic 
nature of the system may yield a situation where basis functions 
get automatically delocalized through Bloch symmeterization. 
But in this paper, because the goal was to make the more 
challenging calculations (larger basis and hybrid calculations) 
easier to perform, we have decided to use diffuse functions in all 
our periodic treatments. 
The use of eq 6 implies that the extended periodic system is 

treated at a choice of theory and basis (level, 0, leading to EPBC 
level,0 )

that bares acceptable cost and numerical stability for the chosen 
systems. Here, we chose DFT with semilocal exchange 
functionals with minimal diffuse and polarized atom-centered 
basis functions such as PBE/6-31+G(d) or plane-wave basis 
with pseudopotentials44,46−49 such as PBE with a 50 Rydberg 
cutoff and Kresse−Joubert style pseudopotential.47 The 
perturbative correction of eq 6 lead to simplexes that are treated 
at level, 1 and level, 0. This aspect may also be clear from eq 14 
and the discussion above. The desired accuracy (level, 1) was 
chosen to be (a) hybrid density functionals with a plane-wave or 
modest atom-centered basis (Section 5.1) and (b) semilocal 
DFT and screened Coulomb hybrid GGA, density functionals 
with large basis treatments (Section 5.2). Thus, we present 
efficient, accurate, and stable165 periodic calculations at higher 
levels of density functional and basis-set approximations. 
Considering that eq 6 is computed here using multiple levels 

of theory, we introduce a notation to ease the discussion for the 
remaining portion of the paper. This notation is slightly different 
based on whether Quantum ESPRESSO (plane waves) or 
Gaussian (atom-centered Gaussian basis adapted to Bloch 
symmetry) is used to compute EPBC 

level,0 . When the atom-centered
basis functions are used, the notation “PBE0:PBE/6-31+G(d)” 
implies that the EPBC 

level,0 and Elevel,0 (α,r) terms in eqs 6 and 4 are

computed at the PBE/6-31+G(d) level while the target level of 
theory is PBE0/6-31+G(d). Furthermore, Elevel,1(α,r) in  eqs 6 
and 4 is obtained from PBE0/6-31+G(d). In this case, both the 
target level of theory and EPBC 

level,0 use Bloch-symmetry adapted 
forms of the basis, whereas this is not the case for Elevel,0(α,r) and 
Elevel,1(α,r). Similarly, the notation “PBE/6-311++G(2df,pd):6-
31+G(d)” implies that PBE/6-31+G(d) is used in computing 
EPBC 
level,0 and Elevel,0(α,r), whereas PBE/6-311++G(2df,pd) is used 

to obtain Elevel,1 (α,r). Again, target and EPBC 
level,0 use Bloch-

symmeterized forms. When EPBC 
level,0 is computed using a plane-

wave basis from Quantum ESPRESSO, the DFT functional and 
kinetic energy cutoff employed are appended to the 
nomenclature above. For example, “PBE0:PBE/6-31+G-
(d):PBE(50 Ry)” indicates that EPBC 

level,0 is treated with PBE
using a plane-wave basis that has a cutoff of 50 Rydberg. In 
addition, the terms Elevel,0 (α,r) and Elevel,1 (α,r) are computed
using atom-centered basis functions, using the PBE/6-31+G(d) 
and PBE0/6-31+G(d) levels of theory, respectively. The target 
level of theory for these calculations is PBE0(50 Ry). Thus, all 
notations above may be summarized by including both 
extrapolation and target levels as “PBE0:PBE/6-31+G(d) → 
PBE0/6-31+G(d)(Bloch)”, “PBE/6-311++G(2df,pd):6-
31+G(d)  → PBE/6-311++G(2df,pd)(Bloch)” , and  
“PBE0:PBE/6-31+G(d):PBE(50 Ry) → PBE0(50 Ry)”. 
The accuracy of this method is quantified from errors in lattice 

energy across a variety of structures discussed in Section 3.2. The 
lattice energy per monomer is defined as 
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where the summation is included so as to also represent the case 
for nonhomogenous adsorbate systems. We compute errors for 
both the energies obtained from eq 6 and from using the lower 
level of theory as an approximation to full periodic calculations 
at higher levels. These errors are computed according to 
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The reported error in lattice energy (ϵLattice) is the mean 
absolute difference between the lattice energies for the full 
periodic target treatment, EPBC 

level,1 , and the method referred to as
“b” in eq 17, which would be either the graphical extrapolation 
based on eq 6, that is, EPBC,R 

graph‑theor. , or the baseline full periodic low-
level treatment EPBC 

level,0 . The latter is used in the benchmark
studies to gauge the improvement afforded from using EPBC 

graph‑theor. 

versus the use of only the low-level periodic treatment, EPBC 
level,0 , to

model EPBC 
level,1 . 

It may also be noted that in eq 17, the monomer energies 
cancel out when the same electronic structure package is used 
for both fragmentation (EPBC,R 

graph‑theor.) and the reference level, 1 
calculation (EPBC 

level,1 ). In that case, eq 17 is a direct gauge of the
absolute energy differences between EPBC,R

graph ‑theor. and EPBC 
level,1 . For

the case where EPBC 
level,1 is computed with Quantum ESPRESSO 

(PBE0) and EPBC,R 
graph‑theor. using both Quantum ESPRESSO (EPBC 

level,0 , 
pure functional) and Gaussian (fragments), the comparison is 
more complicated. However, it may also be noted from Figures 
SI-6 and SI-8 that the conformational energies span an energetic 
landscape of the order of 1−10 kcal/mol. As we will see later in 
the discussion (Sections 4 and 5), the errors from eq 17 noted in 
all cases are of the order of 0.1 kcal/mol or less. This implies that 
the energetic ordering of conformers in Figures SI-6 and SI-8, as  
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obtained from eq 6, are also preserved in all cases, but eq 17 
provides a much more rigorous test than simply gauging the 
energetic ordering of conformers. 
The efficiency of our method is reported as a ratio of the 

serialized computational run-time of eq 6 and the full-system 
high-level benchmark serial time. This type of analysis 
complements the scaling arguments presented previously by 
us in refs 76 and 79. As noted in ref 98, such an analysis is 
essential to gauge the utility of such approximate methods. 
Toward this goal, in this publication, keeping with the 
terminology previous presented in the literature, 39,88,166−170 

the ratio of serialized times mentioned above is referred to in the 
following subsections as the “speedup”. However, as noted 
above, the C++ module that allows this graph-theoretical 
computation is MPI-parallelized, given that the computations 
afforded by eq 6 are trivially parallel.171,172 For the serial 
calculation, the full system dominates the CPU times, as seen 
below and in refs 76 and 78, leading to a choice of parallelization 
which can reduce the effective wall-time to computational costs 
of the full-system low-level calculation. 
3.2. Construction of Structural Libraries for Con-

densed-Phase Water Systems. To ascertain the accuracy 
and efficiency of our methods, we considered a wide-range of 
structures in the form of bulk water systems conforming to 
three-dimensional periodic boundary conditions, thin films of 
water under two-dimensional periodic boundary conditions, and 
various adsorbate molecules on the surface of water films. The 
structures utilized to carry out these benchmark studies included 
both optimized, stable, molecular geometries as well as 

nonstationary structures obtained during short AIMD trajecto-
ries. The Supporting Information document provides an 
extensive discussion of the bulk and surface structures from 
the structural library outlined in Tables 1 and 2. Here, we 
summarize the process of obtaining this library of structures. 
Bulk systems with unit cell sizes ranging from 6 to 48 water 

molecules are considered, and the associated structures are 
obtained from both optimization calculations through plane-
wave basis treatment, as allowed by Quantum ESPRESSO, and 
from atom-centered Gaussians conforming to Bloch symmetry, 
as allowed within the Gaussian suite of electronic structure 
programs. To obtain these structures, our analysis began with 
the well-studied water hexamer cluster system.173,174 Lower 
energy, nonstationary, states were sampled from a set of AIMD 
trajectories (first row in Table 1, with more details in Supporting 
Information, Figures SI 3−5). The 15 structures thus generated 
were used as initial geometries that were replicated and 
optimized with translation vectors representing the condensed 
phase. This provided families of surface (two-dimensional 
periodic boundary conditions, see Figure SI-8 for energy 
distribution) and bulk (three-dimensional periodic boundary 
conditions, see Figure SI-6 for energy distribution) structures. 
The surface structures were optimized with the Gaussian series 
of electronic structure codes,73 which uses atom-centered basis 
functions (the top-block of Table 1), as the procedure did not 
require periodic calculations in the dimension normal to the 
surface. The bulk structures were primarily optimized with the 
Quantum ESPRESSO package,45 which uses plane-wave basis 
sets (bottom-block of Table 1). In addition, to make our 

Figure 3. (a−c) Sample structures for the three periodic sets of libraries of pure water in Table 1. Relative energy distributions for each set of structures 
are displayed in Supporting Information, Figures SI-6 and SI-8. 

Figure 4. Periodic thin film of water with a unit cell of 24 water molecules is represented in (a), where the hydrogen bonds are depicted with dashed 
lines. The unit cell region is treated as a graph (b) where the edges are constructed according to the adaptive spatial envelope prescription described in  
Section 4. This allows the system to be treated by eq 1, treating the periodic character of the system (EPBC 

level,0 ) by a standard, affordable method, while
exchange−correlation and/or larger basis-set corrections are added by the N-body terms arising from the simplex elements of the graph. 
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benchmarks exhaustive, a 6 water unit cell bulk family was also 
optimized with atom-centered basis functions from the Gaussian 
electronic structure code. A few illustrations of these structures 
are provided in Figure 3. 
The heterogeneous adsorbate structures were obtained from 

an elaborate treatment where starting structures were derived 
from a grid constructed parallel to surface as discussed in 
Supporting Information Section SI-1. These starting geometries 
were then optimized to obtain a range of structures used to 
gauge our methodology. Specifically, the adsorbate molecules 
(H2, CH4, and CH3OH were considered) were individually 
positioned on previously optimized water−film interface 
structures captured in Table 1. The resultant benchmark 
structures, reflected in Table 2, were obtained through geometry 
optimization in an atom-centered basis. Next, additional 
structures were obtained by sampling constant unit cell volume, 
PBC-AIMD trajectories. For each trajectory, 13 low energy 
conformations encountered were selected to expand our 
structural library in Table 2. Additional details can be found in 
the Supporting Information. Illustrative example structures for 
the adsorbate-on-water system are provided in Section 5.3. 

4. ADAPTIVE MANY-BODY EFFECTS THROUGH 
GRAPH GENERATION: CHOICE OF SPATIAL 
ENVELOPE FOR EDGE GENERATION (TWO-BODY 
INTERACTIONS) AND MAXIMUM RANK OF 
SIMPLEX, 9 (THE ORDER OF MANY-BODY 
EXPANSION IN EQUATIONS 6 AND 14) 

In order to apply eq 6 to the condensed-phase systems discussed 
above, the unit cell used for the periodic calculations is 
represented as a graph (see Figures 2 and 4). There are three 

specific control parameters in eq 6 that influence the 
construction and evaluation of the graph, the associated many-
body approximations in eqs 6 and 14, and the corresponding 
required set of electronic structure calculations. These include 
(a) the definition of the node or individual molecular 
monomeric units that form the basis for the two MBEs in eqs 
6 and 14, (b) the spatial envelope that assembles the local family 
of edges, or two-body interactions, around any given node, and 
(c) the choice of “9” in eq 6 which dictates the order of many-
body interactions to be included. 
Each water molecule is designated here as a node within a 

graph. The nodal coordinates are defined as the algebraic mean 
of the atomic coordinates within the node. Edges are generated 
by use of a spatial envelope. Here, two types of spatial envelopes 
are considered which define the spatial neighborhood used to 
determine the set of {α} for each “r” in eq 6. The first is based 
upon a fixed distance cutoffs where a given node is connected by 
an edge to each node within the designated Cartesian distance. 
This particular feature is similar to that reported in a variety of 
fragmentation-based methods.87,91,92,113,114,147,175−178 In addi-
tion, the second approach is an adaptive envelope scheme74 

where given the minimum node−node distance (Di) for a 
chosen node, edges are formed such that the respective node− 
node distances are within 10% of Di. In this way, the graph 
begins to represent a hydrogen-bonded network for the systems 
chosen in this publication (as can be seen in Figure 4). However, 
this network allows us to extract one-body (r = 0, nodal 
contributions), two-body (r = 1, edge contributions), three-
body (r = 2, triangular contributions), and higher-order 
contributions toward eqs 6 and 14. Furthermore, the  
specification here is general enough that both bonded and 

Figure 5. Effect of the two key parameters involved in the construction of the graphical representation in eq 6. These two parameters are the spatial 
cutoff for edge generation (range of two-body interaction) and the choice of the maximum rank, R (the order of many-body interactions included in eqs 
6 and 14). (a) Dependence of error in cluster dissociation energy on both of these parameters is presented here, with more details in the Supporting 
Information. Here, extrapolation PBE0:PBE/6-31+G(d) → PBE0/6-31+G(d) for the library of (H2O)6 structures listed in Table 1 is presented and 
complemented by Figures SI-3 and SI-4. For larger envelopes, the error reduces with increasing rank, but in all cases, the error is well inside the 
acceptable range. (b) Graphical representation of a 6 water cluster and (c−e) highest rank simplex for a chosen value of 9 . For example, (e) depicts one 
specific four-body or rank-3 simplex interaction. These results are complemented by Figure 6 for bulk water systems, and Figure SI-20 shows the 
respective errors in conformational energy. 
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nonbonded interactions can be considered easily using the 
protocols described above and have been demonstrated as part 
of AIMD simulations in refs 74 and 78. 
The nodes and edges together define the graph. Thus, in 

summary, a local interaction neighborhood is created using 
spatial envelopes, either adaptive or fixed cutoff, to compute Eχ 
in eq 6 which captures the many-body interactions in the system 
up to order 9 and implemented within eq 6. This neighborhood 
graph creation algorithm is implemented using Python functions 
called from a C++ module which allows the automated 
formation of these graphs and the associated molecular 
fragments up to order 9 in eq 6 for arbitrary (bonded and 
nonbonded74,76−78) systems (see eqs 12 and 13 regarding 
connections to many-body expansions). 
4.1. Rank (9) Dependence of Accuracy of Equation 6. 

In order to gauge the quality of eq 6, 9 , the maximum simplex 
rank, and the spatial envelope, for edge creation, need to be 

chosen for the subsequent condensed-phase studies. In this 
section, we consider the use of eq 6 by varying both 9 and spatial 
envelope sizes. This is first done on gas-phase clusters of six 
water molecules and then on condensed-phase systems that 
include both homogeneous bulk and heterogeneous adsorbate 
interaction systems. The effect on functional extrapolation and 
basis extrapolation is considered. The gas-phase systems help 
focus on the local many-body expansion without condensed-
phase effects. The structures used are described in Section 3.2 
and in greater detail in Supporting Information Section SI-1. 
In Figure 5, we present errors in cluster dissociation energy as 

a function of both 9 and spatial envelope sizes for the water 
clusters. The dissociation energy is the gas-phase equivalent of 
eq 16. It is found that the graphical representation of these water 
structures only required 9 = 1 contributions (Figure 5c) along 
with the adaptive envelope protocol. Although rank-3 objects 
(Figure 5e) for these clusters do demonstrate even greater 

Figure 6. Rank and spatial envelope dependence of accuracy of the energy expression in eq 6 is demonstrated using atom-centered basis functions 
adapted to Bloch symmetry for EPBC 

level,0 (a) and using plane waves for the same (b). As in Figure 5, higher-order many-body interactions provided by
larger 9 values are not necessary to ensure accuracy for the bulk calculations. Furthermore, an adaptive envelope (adaptive edge generation scheme) is 
far more effective in capturing these interactions. This study is expanded upon in the Supporting Information for a variety of unit cell sizes and 
functionals (Figures SI-14 and SI-15), and Figure SI-20 shows the respective errors in conformational energy as a counterpart to (a). 

Figure 7. Similar to Figure 6 but for the inhomogeneous surfaces. (a) Effect of rank and spatial envelope on functional extrapolation, whereas (b) effect 
of rank and spatial envelope on basis-set extrapolation for water surfaces. Panel (a) is complemented by Figure SI-16 where an exhaustive set of 
functionals is considered and Figure SI-21 which also provides the conformational energy error for (a). 
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accuracy when enabled by larger spatial envelopes, the accuracy 
afforded by the rank-1 objects was found to be sufficient. 
Next, Figures 6−8 portray the accuracy of eq 6 for a variety of 

9 values and spatial envelope choices, but for the bulk water 
systems, surfaces, and adsorption problems. As was seen in 
Figure 5 for the water cluster case, accurate lattice energies can 
be achieved with 9 = 1 and the use of the adaptive envelope 
protocol. A similar analysis is conducted in the Supporting 
Information section. Specifically, for a range of bulk water 
systems, we study the accuracy of functional extrapolation in 
Figures SI-14 and SI-15 (which complements the results in 
Figure 6b). In all cases, a variety of 9 values and spatial envelope 
choices are considered. It is found that the effect of higher-order 
many-body terms is largely negligible because of the ONIOM-
like character of the approach; the higher-order contributions 
are already included to some extent at the base-level determined 
by EPBC 

level,0 . To further expound upon this study, we also consider
the influence of rank and spatial envelope on inhomogenous 
water surfaces and adsorbate−water interfaces. 
A few comments are in order with respect to the adaptive edge 

generation. For all systems treated in Figures 6−8, the fixed hard 
edge cutoffs of 5 Å and longer show a larger error as compared to 
the adaptive edge generation scheme74 when only edges (9 = 1 
) are considered. With the inclusion of 9 = 2 effects (three-
body terms), these longer distance interaction are better 
described. This is, however, not found to be necessary within 
the adaptive edge generation scheme.74 The improvement in the 
performance from the fixed edge study is partly due to the fact 
that the longer edge distances include nondirect hydrogen 
bonding water pairs without the intermediate mutually hydro-
gen-bonded neighbor. With the inclusion of the three-body 
terms, these cooperative effects are properly accounted for 
through the mutual hydrogen-bonded neighbor. Aside from the 
above consideration, the increase of 9 does not significantly 
improve the accuracy even with the increase of the unit cell size 
and certainly has a minimal effect within the adaptive scheme. 
The results provided in Figures 7 and 8 are further elaborated in 
Supporting Information, Figures SI-16 and SI-19. At the end, 

9 = 1 with adaptive edge generation appears to be a good stable 
choice that was used for the remaining portion of this paper. 
The results here are also consistent with the discussions in ref 

94 for finite cluster systems. From these discussions, it follows 
that methods that retain a strong ONIOM-type basis of treating 
the full-system at a lower-level of electronic structure may have 
similar characteristics. Such methods include the multicentered 
QM/QM formalism,81,179 the molecular tailoring approach,83 

ONIOM-XO,82 the molecules-in-molecules methodology,84 

and HMBI.86,129 These aspects have also been subsequently 
noted in ref 98. The use of standard MBE methods with 
electronic embedding (i.e., unlike within the ONIOM-like 
description here), by contrast, often require higher-order terms 
to converge to the correct energy.18,71,72,114,180−182 This 
requirement of higher-order terms in noncomposite meth-
ods,94,95,98 many-body expansions with90,91,99,106,121,180 and 
without68−72,102 electronic embedding, can be further exas-
perated by basis-set superposition error from the fragments.183 

The larger rank terms may still be required when (a) the 
chosen full-system low-level treatment does not sufficiently 
capture many-body effects in a given system or (b) many-body 
effects involve true long-range correlation. Because of the 
findings above, the production calculations presented in this 
paper (in the next section) use 9 = 1 representations, and the 
edges (or two-body terms) are generated using an adaptive 
envelope for the pure water systems. In practice, this choice 
implies that eq 7 is employed which includes two-body 
corrections to exchange, correlation, and large basis effects 
based upon an adaptive distance protocol, and the required 
higher-order many-body effects are captured within EPBC 

level,0 . 

5. EFFICIENT EVALUATION OF LARGE BASIS-SET 
APPROXIMATIONS AND RUNG-4 
EXCHANGE−CORRELATION FUNCTIONALS FOR 
CONDENSED-PHASE SYSTEMS USING EQUATION 6 

Hybrid density functional methods include a fraction of 
Hartree−Fock exchange and are computationally expensive 
for periodic calculations because of their spatially nonlocal 
nature.11,41−43,184−186 Furthermore, for plane-wave methods 

Figure 8. (a) Similar to Figure 7a but for adsorbate systems. The horizontal axis represents the level, 0, whereas the target level, 1 is presented in the 
subfigure caption. Panel (b) is analogous to Figure 7b but again for adsorbate systems. In this case, the horizontal axis refers to the target level, 1 study, 
whereas level, 0 is presented in the subfigure caption. These are further elaborated upon in Figure SI-19. 
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exact exchange requires quadratically greater Fourier transforms 
than for the semilocal approaches.19,187,188 The pure, semilocal 
DFT functionals do not suffer from this computational challenge 
but are considered to be less accurate in evaluating hydrogen-
bonded and other noncovalent interactions.13,33,38,189,190 Pure 
functionals  also suffer from self-interaction of  elec-
trons,189,191−193 which is significantly reduced by the fractional 
contribution of the exact exchange incorporated into hybrid 
methods. Equation 6 partially alleviates this by obtaining 
approximations to higher rung functionals at a reduced cost. 
This approach is employed for the study of thin films (Figure 9), 
bulk water (Figures 10 and 11), and the surface adsorption 
systems (Figure 15). 
Our methodology shares similar objectives as range-specified 

“screened” exchange functionals.41−43,184,186 However, here, the 
extent of locality captured by the Hartree−Fock exchange may 
be tailored adaptively and made spatially dependent using graph 
theory. Specifically, this may be done through the inclusion of 
(a) a position, or node, dependent spatial envelope that defines 
the edges, and hence the graph, as outlined in Section 4, and (b) 
the value of maximum simplex rank, 9, in  eq 6. As noted in 
Section 4.1, for the systems studied here, it was found that these 
higher-order terms are not necessary to capture the lattice 

energies for condensed-phase water systems. In the studies 
presented below, we truncated eq 6 at 9 = 1 and used the 
adaptive spatial envelope as explained in Section 4.1. 
This section is organized as follows: Section 5.1 presents an 

analysis of errors and efficiency for condensed-phase systems, 
with more details in the Supporting Information. Basis-set 
extrapolation is considered in Section 5.2 and surfaces with 
organic solutes are considered in Section 5.3. In all cases, the 
error in lattice energy is analyzed using eq 17. 

5.1. Efficient and Accurate Hybrid (Rung-4) DFT for the 
Condensed Phase. In Section 5.1.1, we begin  with  a  
combinatorial approach by extrapolating from three pure 
functions to four hybrid functionals using atom-centered basis 
functions with Bloch symmetry. Next, in Section 5.1.2, using an 
advantageous extrapolation pair (PBE0:PBE) from the study in 
Section 5.1.1, a further set of calculations are performed with 
increasing unit cell sizes of bulk water structures, treated with 
plane-wave basis sets. 

5.1.1. Combinatorial Benchmarks Using Atom-Centered 
Basis Functions Adapted to Bloch Symmetry. In light of eq 1, 
our method can be seen as a graphical, or many-body, correction 
to the chosen low-level treatment in order to approach the 
accuracy of the target high-level treatment. As such, this method 

Figure 9. Here, the accuracy of the energy expression in eq 7 is evaluated using eq 17 for the films of water (two-dimensional periodic boundary 
conditions) with a unit cell of size 24 water molecules (Figure 2). In (a), the target (rung-4) functionals are presented along the horizontal axis, and 
levels used to compute EPBC 

level,0 (which dominates the computational effort) are shown on the legend. Clearly, the lattice energy errors are fractions of
kcal/mol. The baseline comparisons (b) of the chosen lower levels of theory with the high levels of theory show lattice energy error of the order of 1−2 
kcals/mol, with some exceptions discussed in the text. Very similar results were recovered for films with unit cell sizes containing 12 water molecules, as 
shown in Figure SI-17. Similar extrapolations using larger 9 and spatial envelopes are shown in Figure SI-16. A similar plot which shows the error in 
conformational energy is presented in Figure SI-21. The speedup from using eq 7 is presented in (c). Here, the speedup is defined as the ratio of the 
serialized computation time for calculations performed at the higher level of theory on the periodic systems and those obtained using eq 7. A clear 
speedup factor of 2−3 is noted for these homogeneous water surfaces. 

Figure 10. Similar to Figure 9 but for bulk water. (a) Each of the target hybrid functionals is extrapolated to within a fraction of a kcal/mol with an 
appropriately chosen semilocal DFT method. The effect of this extrapolation on conformational energy is shown in Figure SI-22. The efficiency of 
these extrapolations leads to roughly a factor of 15 speedup, as seen in Figure 10c (even greater speedups are obtained when extrapolations are done 
using plane-wave basis sets in Figure 11b). Baseline comparisons with level, 0 PBC calculations are presented in (b). 
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provides accuracy according the target (hybrid DFT) level of 
treatment, at computational cost commensurate with the chosen 
lower (pure functional) level of theory for condensed-phase 
systems. Thus, to provide a baseline error analysis, we also 
present the mean absolute lattice energy errors between the low 
(level, 0) and high (level, 1) levels of theory in Figures 9b, 10b, 
and 11a. The chosen low levels of theory (BLYP,62 PBE,63 and 
revTPSS64) varied in how well they recovered the higher level 
(TPSSh,60 PBE0,61 B3LYP,58 and CAM-B3LYP59), and our 
next goal is to check if this is improved upon by using the 
methods presented above. A consistent atom-centered basis set 
was used, 6-31+G(d), for the calculations in Figures 9 and 10, 

meaning only the density functionals are modified while the 
basis-set treatment remains constant. 
Equation 17 is employed to compare the hybrid DFT lattice 

energy results to that of both the lattice energies from the low-
level baseline semilocal functionals and from the use of eq 7 (in 
light of Section 5.1.1) to extrapolate from those low-level 
functionals. When we consult the baseline results in Figures 9b 
and 10b, we note that TPSSh lattice results are already well 
captured by the modified version64 of its parent 3rd rung 
functional TPSS.32 Furthermore, the lattice energies from CAM-
B3LYP are surprisingly well captured by the 2nd rung PBE 
functional. Meanwhile, PBE0 and B3LYP are less well 
represented by these lower rung functionals, but PBE0 appears 

Figure 11. (a) Similar results to that in Figure 10, but now the full-system low level is treated using a plane-wave basis with a 50 Rydberg kinetic energy 
cutoff and the Quantum ESPRESSO electronic structure package.45 As specified in Table 1, the 6 and 12 water unit cells used a k-mesh of 23, whereas 
24 and 48 used the Γ-point [as can be seen in Table 1 and (b)]. This is true for all bulk calculations including the full-system low level. The expanded 
treatment of each of these systems, including the effect of choice of maximum rank of simplexes and the envelope size, is provided in Figures SI-14 and 
SI-15 and the conformational errors are provided in Figure SI-22. (b) Extrapolation PBE0:PBE/6-31+G(d):PBE(50 Ry) → PBE0(50 Ry) offers 
significant speedup with increasing unit cell size. For the 48 water unit cell systems, these calculations were able to reduce the computational times from 
about 5 days to 15 min serial CPU time (or 3.5 min with MPI parallelism). The study here provides a robust and efficient option to add hybrid 
corrections to plane-wave calculations. 

Figure 12. Here, the accuracy of the energy expression in eq 7 is evaluated using eq 17 for large basis calculations with two-dimensional periodic 
boundary conditions. The unit cell size of 24 water molecules. The target basis and the basis sets used to compute EPBC 

level,0 are presented along the 
horizontal axis, while the functionals are shown on the legend. Clearly, the lattice energy errors from the graph-theoretic formalism (a) are fractions of 
kcal/mol. The baseline comparisons (b) for the chosen smaller basis set, 6-31+G(d), with the larger basis sets for the film of water molecules shows a 
mean absolute error on the order of 1−3 kcal/mol per water (similar results were found for the 12-water unit cell, as seen in Figure SI-18). Similar 
extrapolations using larger 9 and spatial envelopes are shown previously in Figure 7b. The choice of 9 is shown to have minimal impact, and the 
adaptive cutoff offers the best accuracy for basis-set extrapolation, consistent with the earlier discussion. The analogous plots for the conformational 
energy errors are provided in Figure SI-23. The speedup from using eq 7 increases from a factor of 6 to a factor of 20 as the target large basis set is 
increased and is reported in (c). 

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article 

https://dx.doi.org/10.1021/acs.jctc.9b01089 
J. Chem. Theory Comput. 2020, 16, 4790−4812 

4803 

https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig11&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01089/suppl_file/ct9b01089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01089/suppl_file/ct9b01089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01089/suppl_file/ct9b01089_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig12&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01089/suppl_file/ct9b01089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01089/suppl_file/ct9b01089_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig12&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01089?ref=pdf


to be nicely approximated by its parent functional PBE, whereas 
B3LYP is moderately matched by revTPSS. 
The next question pertains to the extent of the improvement 

in accuracy when using eq 7. Overall, the use of this edge-based 
(two-body) extrapolation demonstrates significant improve-
ment in obtaining the target hybrid functional lattice energies, 
with the notable exceptions of TPSSh:revTPSS/6-31+G(d) → 
TPSSh/6-31+G(d)(Bloch) and CAM-B3LYP:PBE/6-31+G(d) 
→ CAM-B3LYP/6-31+G(d)(Bloch), as the low-level calcu-
lations reproduce the calculated lattice energies reasonably well. 
The best extrapolations tested here were PBE0:PBE/6-31+G(d) 
→ PBE0/6-31+G(d)(Bloch) and B3LYP:revTPSS/6-31+G(d) 
→ B3LYP/6-31+G(d)(Bloch), where the low level already 
demonstrated a fair degree of accuracy in replicating the target 
energies but with the edge corrections from eq 7 demonstrates 
that a remarkable recovery of the lattice energy is achieved in 

both bulk water (Figure 10a) and surface (Figure 9a) 
calculations at much reduced costs. This reduction in cost is 
quantified in Figures 9c and 10c where the speedup is the ratio of 
CPU time cost of the target functional over the computational 
time cost of the use of eq 7. For the water film systems, the 
reduction in computational cost is by more than a third, whereas 
for the three-dimensional bulk system, we see a roughly 15 times 
reduction in computational times. (In the next paragraph, we 
find that the speedup is much greater when plane-wave basis 
functions are used.) This manner of reporting does not consider 
the run-time improvement gained through parallel treatment of 
the individual component calculations. 

5.1.2. Plane-Wave Basis Treatment of Larger Unit Cells. 
Because the extrapolation PBE0:PBE/6-31+G(d) → PBE0/6-
31+G(d)(Bloch) proved to be advantageous in Figures 9 and 
10, this combination of functionals was again considered for a 

Figure 13. Similar to Figure 12 but for bulk water. The use of eq 7, in (a), shows a significant gain in accuracy over the baseline studies shown in (b). 
The conformational energy errors for these extrapolations are provided in Figure SI-24. Although the errors remain under a kcal/mol upon use of eq 7, 
the computational efficiency is substantially greater and shows a 30−50 speedup as seen in (c). The speedup is computed with respect to the same 
calculations performed at the higher level of theory on the systems with a unit cell size of 24 water molecules. 

Figure 14. Adsorbates considered in this study are H2 (a,b), CH4 (c,d), and CH3OH (e,f). The graphical representations, displayed in (b,d,f), are 
localized to the unit cell in this study (although this is not a requirement) and used for the evaluation of eq 7. For the case of methanol (e,f), it is clearly 
seen that the graphical decomposition considers several nonbonded interactions. 

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article 

https://dx.doi.org/10.1021/acs.jctc.9b01089 
J. Chem. Theory Comput. 2020, 16, 4790−4812 

4804 

https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig13&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01089/suppl_file/ct9b01089_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01089?fig=fig14&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01089?ref=pdf


series of larger bulk systems in Figure 11. We consider a similar 
scheme as before but replace EPBC 

level,0 in eq 7 with the
corresponding energy obtained from plane-wave basis treatment 
from Quantum ESPRESSO. 45 The terms Elevel,0 (α,r) and
Elevel,1(α,r) remain in an atom-centered Gaussian basis using 
the same DFT  functional  considered  in  the Quantum  
ESPRESSO calculation. In Figure 11, we use a plane-wave 
basis with a kinetic energy cutoff of 50 Ry using the projector-
augmented wave (PAW) representation46 with the Kresse− 
Joubert style in both the periodic high (target) and low levels 
(level, 0) of treatment. The fragments, as noted at the top of 
Section 5, used the atom-centered basis functions, 6-31+G(d) 
and 6-311++G(d,p). The k-mesh chosen for both the pure and 
hybrid DFT periodic treatments are indicated in Table 1. Note 
that when the atom-centered basis calculations are performed 
the choice of k-mesh differs between pure and hybrid 
functionals. However, for the plane-wave basis, the pure and 
hybrid functionals both have the same number of k-points, and 
the chosen k-mesh reduces to the Γ-point for the larger bulk 
systems (Figure 11). The reason for this difference can be seen 
from Figure 1 where the computational expense for k-sampling 
in hybrid functional calculations is shown to be prohibitive, 
especially for plane waves. 39,44,194 

As was seen in the extrapolation to the atom-centered periodic 
treatment of bulk water at PBE0 in Figure 10, significant 
agreement with hybrid plane-wave lattice energies was also 
achieved as compared to the standard pure DFT treatment 
(orange bars in Figure 11a) for the plane-wave case. This 
extrapolation proved to be accurate for all unit cell sizes 
considered (6 water molecules to 48 water molecules) and is 
able to reduce a PBE0 calculation from approximately 5 days 
down to a few minutes bottlenecked at PBE(50 Ry) (Figure 
11b). The effect of rank and envelope sizes has been discussed in 
Section 4.1 and is expounded upon in the Supporting 
Information. As noted, these effects are found to be minimal. 
In summary, we are able to achieve sub-kcal/mol accuracy for 

higher levels of density functional methods at a fraction of 
computational cost. This approach is shown to work well with 
both bulk and condensed-phase surfaces and with both plane-
wave and Bloch symmetrized atom-centered bases. 
5.2. Efficient and Accurate Basis-Set Extrapolation 

with Periodic Systems. When using nonorthogonal atom-
centered Gaussian basis sets in periodic simulations, the 
electronic basis functions are transformed into orthogonal and 
translationally invariant Bloch functions.195 These are also often 
referred to as “crystalline orbitals”.11 However, when diffuse and 
polarized atom-centered basis functions are included, significant 
density may be found either (a) outside of the periodic cell or 
(b) in regions with limited atomic density, where the latter leads 
to instabilities in the SCF procedure.11,165 Furthermore, from 
using Ewald summation57 and from fast multipole-type 
approximations,54,55 the long-range portion of the Coulomb 
repulsion term is computed in reciprocal space (k-space) for 
improved efficiency; the associated integration over k-cells 
contributes in a significant manner to the cost of expanding the 
chosen (diffused and polarized) basis-set size. However, larger 
basis sets are often needed to represent weak interactions78,196 

that are present in catalytic problems.6,8,197 To achieve stable 
and efficient basis-set treatments of condensed-phase reactive 
systems, we employ eq 6 as done in ref 78. By use of the graph-
theoretic treatment discussed above, we are able to obtain large 
basis treatment of local interactions. Local is defined by the 
graphical decomposition perspective in eq 6 and is quantified by 

(a) the size of 9 and (b) the density of local nodal connectivity 
through edges. Facilitated by the discussion in Section 4.1, here 
we consider two-body-based local basis-set space expansion (see 
eq 14) which is represented as edges in the graphical 
representation of the system. This is done in conjunction with 
treating the condensed-phase portion, EPBC 

level,0 in eq 6, using less 
computationally intensive atom-centered basis sets to reduce 
cost and increase stability with periodic k-cell integration (see 
Tables 1 and 2). Here, we provide a numerical tool to compute 
properties accurate to highly diffuse Pople-type basis sets (such 
as 6-311++G(df,2dp)) at costs commensurate with minimal 
Pople-type basis sets such as 6-31+G(d).198 Similar basis-set 
extrapolations, using the same low-level basis set, were shown to 
perform well in ref 78 for molecules in the gas phase. As we 
demonstrate below, this reduces the computational costs and is 
hence a key step in pushing the realm of possible accurate 
condensed-phase simulations. 
Graph theory-based basis-set computations were performed 

on the thin films for multiple DFT methods, and these are shown 
in Figure 12. The selected DFT methods are the three semilocal 
functionals considered in Section 5.1.1 and two screened hybrid 
GGA functionals, HISS and HSE,41−43 which employ a distance-
based screening of the exact exchange for reduced computa-
tional cost in the condensed phase. Through computational 
effort commensurate with 6-31+G(d), we are able to obtain 
accuracy comparable to multiple diffuse basis sets with accuracy 
in lattice energy in the sub-kcal/mol range (see Figure 12). The 
lattice energy errors remain consistent across irrespective of 
choice of DFT functional which is an attestation to the 
robustness of this approach and shows that the method is 
transferable across DFT methods. Furthermore, as noted in 
Figure 12c, the graph-theoretic procedure provides a 6-25 
speedup as compared to PBC calculations using large basis sets 
on water surfaces. Bulk water systems, shown in Figure 13, have 
also been treated in a similar manner. Here, again we observe 
sub-kcal/mol accuracy, with a computational speedup of the 
order of 25−50 as compared to the large basis full-system 
calculations. In summary, we have demonstrated the accuracy 
and significant efficiency of our graph-theoretic procedure to 
capture many-body interactions on surfaces and condensed 
phase. This is the case for both accurate density functional 
computations and for large basis-set calculations. 

5.3. Error Analysis for the Study of Organic Impurities 
on the Surface of Water. Next, we consider the adsorption of 
H2, methane, and methanol, on a film of water. The goal here is 
to gauge the effectiveness of the scheme tested above for the 
study of heterogeneous systems that may be of significance in 
chemical catalysis.5,6,8,199,200 The structures considered here are 
obtained from both geometry optimization calculations and 
from sampling AIMD trajectories of systems where the unit cell 
is chosen to contain 24 water molecules interacting with a single 
adsorbate molecule, as described in Section 3.2 and the 
Supporting Information. The graphical representation of the 
system (Figure 14) is constructed along a similar vein as that 
described in Section 4, but in this case, the adsorbed impurity is 
treated as a single additional node that forms edges based upon a 
spatial envelope with a cutoff of 5.5 Å. The graphical 
representation capturing water−water interactions was main-
tained along similar lines as those described in Section 4. Figure 
14 provides an example set of graphical representations. Because 
of the presence of the impurity on the surface, one may suspect 
that graphical faces (representing three-body interactions) 
involving two water molecules and a solute molecule are 
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significant. However, the effect of 9 = 2 and 9 = 3 terms are 
shown to be relatively minimal. See Figure 7 and associated 
figures in the Supporting Information. 
The set of DFT extrapolations tested in the previous 

subsection are also considered here for the solute−water− 
surface interaction, and the results are shown in Figure 15. The 

trends here are similar to those for the pure water film and bulk 
systems in Figures 9 and 10. As before, the most beneficial 
extrapolations are PBE0:PBE/6-31+G(d) → PBE0/6-31+G-
(d)(Bloch) and B3LYP:revTPSS/6-31+G(d) → B3LYP/6-
31+G(d)(Bloch). These calculations show an approximate 2− 
3 speedup (as was seen in Figure 9c for the homogeneous 
surfaces) as compared to the full system with a slight increase in 

efficiency with the size of the adsorbed solute, as seen in Figure 
16. 
The basis-set extrapolations (Figure 17) show lattice energy 

errors of less than 0.5 kcal/mol for all five functionals, which is a 

significant improvement when compared with the baseline 
results shown in Figure 17. As noted above, these results hold 
across a variety of functionals. A significant cost reduction is seen 
in Figure 18 with increasing relative efficiency with target basis-
set size and through consideration of screened hybrid GGA 
functionals HISS and HSE. 
In summary, we have demonstrated that the methods we have 

developed are equally applicable for pure water condensed-
phase system and to heterogeneous systems such as adsorbates 

Figure 15. Here, the accuracy of the energy expression of eq 7 is 
evaluated using eq 17 for a film of water with one solute molecule on its 
surface. The unit cell consists of 24 water molecules with one solute 
molecule (H2, CH4, or CH3OH) as in Figure 14. The target (rung-4) 
functionals are presented along the horizontal axis, whereas the solute 
molecule is presented above the histogram plots on the left. The use of 
eq 7 provides accurate lattice energies as seen from the figures on the 
left. These improvements are clarified by providing baseline 
comparisons with the respective lower level functionals on the right 
side. Furthermore, Figures 7 and SI-19 provide an expanded study of 
convergence of eq 6 as a function of 9 , and the 9 = 1 effects captured 
in eq 7 appear to appropriately include the effects presented here. 

Figure 16. Speedup through the use of eq 7. The speedup is computed with respect to the same calculations performed at the higher level of theory on 
the water films with solutes. The semilocal DFT to hybrid DFT extrapolations demonstrated a speedup of about a factor of 2−3. 

Figure 17. Similar to Figure 15 but for basis-set extrapolation. As 
before, we choose the basis set 6-31+G(d) as the lower level and these 
are used within the graph-theoretic formalism in eq 7 to provide results 
for higher level basis sets presented along the horizontal axis. The solute 
molecule for each set of systems is presented above the histograms on 
the left. The graph-theoretic basis-set extrapolations (left) consistently 
show accuracy to within 0.5 kcal/mol in lattice energy, while the smaller 
basis baseline (right) shows nearly 4 times the error. The speedup is 
large as shown in Figure 18. In  Section 4.1, Figure 8b, we provided an 
expanded study of convergence of eq 6 as a function of R, and the R = 1  
effects captured in eq 7 appear to appropriately represent the effects 
presented here. 
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on the surface of water. This application also demonstrates an 
increase in relative efficiency over the target calculations, 
allowing future studies on complex heterogeneous systems 
with greater efficiency and stability. 

6. CONCLUSIONS 

We discuss the implementation of our graph-theoretic 
extrapolation procedure for accurate condensed-phase elec-
tronic structure studies in homogeneous as well heterogeneous 
systems. This was achieved by partitioning a chosen cluster 
within the condensed-phase system into vertices or graphical 
nodes, that are then connected through edges to form a 
geometric graph representation or interaction network. This is 
then used to construct an expanding series of local many-body 
interactions up to arbitrary orders. Such an approximation is 
then embedded within the ONIOM extrapolation scheme to 
arrive at an overall energy expression that provides a conduit for 
efficient and accurate condensed-phase treatment. Specifically, 
the graph-theoretic partitioning scheme provides a perturbative 
correction to an affordable periodic electronic structure method 
leading to improved accuracy and efficiency in functional and 
basis-set extrapolation. The accuracy of this approach was 
demonstrated for both plane-wave and atom-centered Gaussian 
basis functions adapted to Bloch symmetry. 
Specifically, this paper demonstrates three significant 

observations. First, semilocal DFT results may be used in 
conjunction with the above-mentioned approach to yield hybrid 
DFT accuracy in the condensed phase, at “pure” DFT cost for 
both plane-wave and atom-centered Gaussian basis functions 
adapted to Bloch symmetry. Second, modest sized atom-
centered basis-set treatment may also be used with this approach 
to achieve large basis-set accuracy, at much reduced cost. Third, 
low-rank approximations emanating from the aforementioned 
graph-theoretic many-body theory are sufficient to describe 
condensed matter systems studied here to obtain results in good 
agreement with computationally prohibitive condensed-phase 
hybrid DFT and large basis calculations for bulk systems as well 
as adsorption surfaces, that is, homogeneous as well as 
heterogeneous systems. The third observation has been shown 
to be the case regardless of basis (plane waves and atom-
centered Gaussians) and independent of software package; 
indeed all calculations performed here use both Quantum 
ESPRESSO as well as Gaussian for a single-energy evaluation for 
the specific condensed matter system. In all cases sub-kcal/mol 
lattice energy errors are shown to be achievable at significant 
reduction in computational cost. The accuracy and efficiency of 
this method was the most pronounced when considering bulk 
water (e.g., with (H2O)48 unit cell) within a plane-wave 
treatment of periodic boundary conditions, achieving a 

computational cost reduction from a few days down to a couple 
minutes. 
The systems considered as part of our computational 

benchmarks include bulk water systems with unit cell sizes of 
up to 48 water molecules, and water surfaces, films, and those 
involving the interfacial interaction of these surfaces with 
organic adsorbates. Here, the unit cell from the condensed phase 
was chosen to be the cluster for representing the graphical 
partitioning. In all cases, it was also found that the basis-set 
extrapolation results appear to be transferable across DFT 
functionals with about a tenth of the computational cost and less 
than 0.5 kcal/mol lattice energy error. For the DFT functional 
extrapolations, the hybrid functionals PBE0 and B3LYP were 
well described at costs commensurate with PBE and revTPSS. 
Overall, this approach is demonstrated to perform well for both 
homogeneous and heterogeneous systems. 
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