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ABSTRACT: Over a series of publications we have introduced a 
graph-theoretic description for molecular fragmentation. Here, a 
system is divided into a set of nodes, or vertices, that are then 
connected through edges, faces, and higher-order simplexes to 
represent a collection of spatially overlapping and locally interacting 
subsystems. Each such subsystem is treated at two levels of electronic 
structure theory, and the result is used to construct many-body 
expansions that are then embedded within an ONIOM-scheme. These 
expansions converge rapidly with many-body order (or graphical rank) 
of subsystems and have been previously used for ab initio molecular 
dynamics (AIMD) calculations and for computing multidimensional 
potential energy surfaces. Specifically, in all these cases we have shown 
that CCSD and MP2 level AIMD trajectories and potential surfaces 
may be obtained at density functional theory cost. The approach has been demonstrated for gas-phase studies, for condensed phase 
electronic structure, and also for basis set extrapolation-based AIMD. Recently, this approach has also been used to derive new 
quantum-computing algorithms that enormously reduce the quantum circuit depth in a circuit-based computation of correlated 
electronic structure. In this publication, we introduce (a) a family of neural networks that act in parallel to represent, efficiently, the 
post-Hartree−Fock electronic structure energy contributions for all simplexes (fragments), and (b) a new k-means-based tessellation 
strategy to glean training data for high-dimensional molecular spaces and minimize the extent of training needed to construct this 
family of neural networks. The approach is particularly useful when coupled cluster accuracy is desired and when fragment sizes grow 
in order to capture nonlocal interactions accurately. The unique multidimensional k-means tessellation/clustering algorithm used to 
determine our training data for all fragments is shown to be extremely efficient and reduces the needed training to only 10% of data 
for all fragments to obtain accurate neural networks for each fragment. These fully connected dense neural networks are then used to 
extrapolate the potential energy surface for all molecular fragments, and these are then combined as per our graph-theoretic 
procedure to transfer the learning process to a full system energy for the entire AIMD trajectory at less than one-tenth the cost as 
compared to a regular fragmentation-based AIMD calculation. 

I. INTRODUCTION 

Computing accurate potential energy surfaces for complex 
problems is challenging and at the forefront of modern 
computational chemical physics and computational chemis-
try.1−9 Accurate potential surfaces are needed for predicting 
molecular spectroscopic properties beyond the harmonic 
approximation8−12 and for studying most reactive pro-
cesses.13−20 Computing accurate potential energy surfaces is 
thought to be an exponential scaling problem. For example, for a 
system with N nuclear degrees of freedom, with M 
discretizations per dimension, determined based on the mass 
of the nuclear degrees of freedom, the complexity of the problem 
of computing potential surfaces may grow2 as M( )N . 
Furthermore, each potential energy calculation needs the 
accurate quantum-mechanical treatment of electrons, and 

post-Hartree−Fock electron correlation methods such as 
CCSD(T) have a steep algebraic scaling. Thus, together, this 
problem of computing accurate potential surfaces presents a 
grand challenge for computational chemistry, and it is known to 
have critical applications in the areas of atmospheric,21−24 

biological,13−20 and materials chemistry.25−27 

To overcome the algebraic complexity of an electronic 
structure, many new fragmentation methods have been 
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developed.28−47 These methods essentially divide a molecular 
system or condensed-phase problem into orthogonal or 
overlapping sections, often determined based on chemical 
intuition. The associated individual fragments are then carefully 
arranged to obtain the overall energy, gradients, and higher-
order properties of the entire system. The reference list cited 
above is not exhaustive but strongly suggests the deep impact 
these methods are having on the state of the art for electronic 
structure calculations. 
In refs 48−57, the authors have introduced a graph theory-

based approach to molecular fragmentation, where a system is 
divided into a set of orthogonal fragments that are treated as 
nodes within a graph. These nodes are then connected through 
edges, defined based on some predetermined distance cutoff, to 
capture two-body interactions. Faces obtained from three 
connected nodes then represent three-body interactions, and 
similarly high-order n-body interactions are captured via a set of 
n mutually connected nodes. Over a set of publications it has 
been established that, when the graph-theory-based many-body 
theory highlighted above is combined with Our own n-layered 
Integrated molecular Orbital and Molecular mechanics 
(ONIOM), the energy and the gradients obtained from such a 
formalism yield a convergent behavior with increasing orders in 
many-body ranks,54−56 in addition to providing conservative 
molecular dynamics trajectories.48−57 Furthermore, it has been 
shown44,47,54,56 that there is a very strong connection between 
these graph theoretic methods,55 many-body theory,1,58−66 

molecular fragmentation methods,28−47 and ONIOM.67−72 In 
refs 53 and 57 we have also shown that potential energy surfaces 
can be written as a linear combination of individual potential 
energy functions obtained from several such graph-theoretic 
descriptions of molecular fragmentation (i.e., by constructing a 
superposition of graphs). In essence, in refs 53 and 57, each 
molecular fragmentation protocol leads to a different graph, and 
the overall potential surface is assembled through a linear 
combination of the associated potential surface functions. An 
efficient approach for quantum computation has also been 
introduced from these methods in ref 73. Together these 
descriptions allow us to expand potential energy surfaces as 
functions of lower-dimensional subspaces of the nuclear degrees 
of freedom.74 This is consistent with methods such as high-
dimensional model representation,3,75,76 weighted sum of 
products of approximations,77,78 and the permutationally 
invariant polynomials79 approach, where, influenced by the 
early work of Kolmogorov80,81 and Sobol,82 a high-dimensional 
function is written as a linear combination of lower-dimensional 
functions. 
However, significant challenges remain with respect to the 

graph-theoretic molecular fragmentation methods described in 
refs 48−57. First, with the graph theory protocol, the number of 
electronic structure energy calculations to be performed for the 
fragments grows exponentially when potential surfaces are 
desired. These fragments are known as simplexes, as these are 
computed from the graph-theoretic description. Second, while 
the fragmentation procedure does alleviate the electron 
correlation scaling problem for the full system, the fragments 
may, in general, be large enough to also present a serious 
challenge for post-Hartree−Fock methods. This publication 
overcomes both challenges by using machine learning methods 
on top of graph-theoretic fragmentation protocols. In fact, here, 
a family of neural networks (NNs) is introduced, one neural 
network for each simplex within the graph, that helps us 
accurately predict the difference in energy between a high level 

of electronic structure and a low level of electronic structure, as 
needed within the ONIOM-type description of potential energy 
surfaces discussed here. Thus, the overall energy of the system 
becomes a linear combination of neural network energies. 
The training data needed to construct the simplex (or 

fragment) neural networks in this paper are obtained from ab 
initio dynamics trajectories. The data are then classified using an 
unsupervised learning method called the mini-batch k-means 
clustering algorithm.83,84 This algorithm is essentially a 
multidimensional tessellation83,85−89 method that divides the 
multidimensional ab initio potential energy data space into 
regions of significance that yield the training set for the neutral 
network algorithm for each separate simplex. We benchmark our 
predictions using different numbers of such training sets and 
show that our method powerfully extrapolates both the simplex 
energy and the total energy of the system as a resummation 
based on graph theory. 
The paper is organized as follows: In Section II, we present the 

graph-theoretic method for molecular fragmentation and further 
generalize the idea such that machine learning techniques can be 
used to enhance the efficiency of the high-level fragment 
calculations. As we note in Section III, this is particularly 
important for cases where larger fragment sizes and higher-rank 
many-body approximations may be necessary. At the end, 
Section III introduces a method where the electronic energy for 
a system is extrapolated using a parallel stream of independent 
neural networks. In Section IV IV.A, we introduce an efficient 
technique to obtain an adequate training set using k-means-
based tessellation of the multidimensional nuclear coordinated 
space; the associated training data are then used in the 
construction of a family of neural network models. In Section 
V, the approach is demonstrated for protonated water clusters. 
Conclusions are given in Section VI. 

II. GRAPH REPRESENTATIONS FOR LOCAL 
MANY-BODY INTERACTIONS 

In a series of publications48−57,73 graph theory-based techniques 
have been discussed to compute efficient and adaptive many-
body expansions1,58−66 that have strong connections to 
molecular fragmentation28−47 and ONIOM.67−72 The salient 
features of this approach are as follows: the molecular assembly 
is partitioned into a set of nodes, or vertices. These nodes are 
then connected through edges based on a chosen edge length 
threshold that captures the extent to which two-body bonded 
and nonbonded interactions are to be captured. Together the set 
of nodes and edges define a graph, { }V V ; x 0

x
1 
x , which is 

obtained from the instantaneous molecular structure x̅. Here V0
x̅ 

is the set of vertices, and V1
x̅ is the set of edges for the molecular 

graph depicting the structure x̅. This graph is now said to 
represent local interactions, where through the presence of 
edges, two-body local interactions are captured. But inherently 
present in this graph are also higher-order interactions 
represented by triangles, tetrahedrons, and objects with five or 
more nodes. The critical aspect here, which makes the 
connections to many-body theory rigorous, is that these 
higher-order objects are completely connected. That is, here 
all pairs of nodes in the included higher-order objects are 
connected through edges, and such objects are known as affine 
simplexes;90−92 furthermore, the resultant graphical representa-
tion is often referred to as a simplical complex.91 Each set of 
rank-r simplexes, { = ··· }r V 0 r , thus arises from a (truncated) 
power-set of the elements within the graph, as follows. 
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{ = ··· } { ··· ··· }rV V V V V V0, , , , , , , ,r 0 1 2 r (1) 

The elements of such a power set provide a general and robust 
scheme to construct many-body expansions for arbitrary 
systems. 
The above graphical description allows a dynamic and flexible 

representation of local many-body interactions. The energetic 
measure considered in refs 48−57 and 73 consists of a 
perturbative, ONIOM-type, correction to a result obtained at 
a lower level of theory, where the perturbative correction is the 
difference between two many-body expansions (replacing the 
standard “model-high” minus “model-low” portion in ONIOM) 
given by the graphical representation above. Consistent with the 
notions behind ONIOM,67 the energy expression48−57,73 that 
conveys this general idea is 

= +E E E Ex x x x( ) ( ) ( ) ( )MBE,gt 
ONIOM level,0 

MBE 
level,1 

MBE 
level,0 

(2) 

where the left side, EMBE,gt ONIOM (x̅), denotes the graph-theoretically 
obtained many-body correction to ONIOM, and the term 
EMBE 
level,I(x̅) on the right side may encompass the full system or a 
chosen “active site”. Ab initio molecular dynamics (AIMD) 
trajectories have been studied with both options;48−52,56 

furthermore, quantum nuclear effects arising from detailed 

potential energy surface treatments have also been introduced 
based on generalizations53,57 to eq 2. In addition to the 
extrapolatory, ONIOM-like form of eq 2, each term in the 
extrapolation is a many-body expansion that is now written in a 
general and computationally robust fashion up to order (or 
rank) as 

= 
= =

Ä 

Ç

ÅÅÅÅÅÅÅÅÅÅÅ 

É 

Ö

ÑÑÑÑÑÑÑÑÑÑÑ 
E E p( 1) ( 1)

r

r 
r 

m r 

m r m 

V 
MBE 
level,I 

0 
,

level,I ,

r (3) 

where pα
r,m is the number of times the α-th (r + 1)-body term (in 

set Vr) appears in all (m + 1)-body terms (in set Vm for m ≥ r), 

and consequently = 

Ä
Ç 
ÅÅÅÅÅÅ

É
Ö 
ÑÑÑÑÑÑp( 1)m r 

m r m, is the overcounting 

correction for the number of times the α-th (r + 1)-body term 
appears in all objects of rank greater than or equal to r. It is 
important to emphasize that eq 3 is essentially identical to 
standard many-body expressions but presented now using graph 
theory. Thus, the full energy expression, which combines eqs 2 
and 3, becomes 

Figure 1. (a) The approach for constructing an NN for the full system. The learning space scales significantly with system size. (b) Our approach of 
computing ΔEα,r 

level,1;level,0 in eq 4 using NNs. There are multiple NNs in (b), one for each simplex. The complexity of these NNs in (b) are tremendously 
reduced by using eq 4, where only nodes, edges, and other higher-order simplexes may be used to compute machine learning models. 
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where 

=E E E( )r r r,
level,1;level,0 

,
level,1 

,
level,0 

(5) 

and = 

Ä
Ç
ÅÅÅÅÅÅ 

É
Ö
ÑÑÑÑÑÑp( 1)r 

m r 
m r m, , as noted above, is the number of 

times the α-th (r + 1)-body term appears in all objects of rank 
greater than or equal to r. In practice, the individual simplex 
energy contributions, {ΔEα,r 

level,1;level,0 } in eq 4, are computed
independently, asynchronously, and in parallel.56 Furthermore, 
the implementation also allows one to use separate electronic 
structure packages for each level of treatment. Our asynchro-
nous, Python/C++ graph-theoretic fragmentation implementa-
tion currently supports the simultaneous use of Gaussian,93 

ORCA,94 Psi4,95 Quantum Espresso,96 and OpenMX97 within a 
single electronic structure, dynamics, and potential surface 
calculation. In this paper, electronic structure calculations are 
computed using the Gaussian package.93 

When potential surfaces are needed,53,57,98 multiple graphical 
representations may contribute to a single nuclear geometry. In 
refs 53 and 57 we have introduced a variational procedure to 
obtain the potential surface from a linear combination of graph 
representations, that is 

= 

× 
=

E E 

E 

R( ) ( 1)
r 

r 

r 
r 

V 

MBE,gt 
ONIOM level,0 

0 

, , 
level,1;level,0 

, 
r (6) 

= 
=

E 
r 

r 
r 

V0 
, , , 

level,1;level,0 

r (7) 

where the quantities r 
, , in eq 6, are the analogous extensions 

to r in eq 4 for each graph { }V V;0 1 and 

[ ]R( 1) ( ) 
r r r 

, , (8) 

That is, now, r 
, is the number of times the αth (r + 1)-body

term appears in all objects of rank greater than or equal to r in 
graph . The terms {υβ(R)} are weights computed variation-
ally53,57,98 for graph , with simplexes given by Vr 

β. Thus, the 
weighted-graph approach to molecular potential surfaces simply 
changes the weights on the energy correction terms in eq 4, 
leaving intact the complexity of computing the terms in eq 5. In 
this paper, we overcome this challenge through the machine 
learning protocols discussed below. We show how a family of 
neural networks may be used to “learn” and “predict” the 
behavior of eq 5 for all values of r, which may, in turn, be used in 
eq 4 to provide improved efficiency. We discuss strategies to 
optimize the learning space, to reduce the overfitting problem 
and show that a suitable set of individual neural networks, each 
representing a different simplex, can be computed separately to 

obtain sub-kJ/mol accuracy. Our approach is depicted in Figure 
1b. This may be contrasted from the traditional NN approach in 
Figure 1a, where the full system energy Elevel,1 is to be
extrapolated. 
For the remaining part of the paper we drop the index β and 

formulate our approach for a single graph. Generalization to 
multiple graphs is implied through simple modification of 
weights as in eq 7 and will numerically be considered in future. 

III. MACHINE LEARNING APPROXIMATIONS TO 
ΔEα,R 

LEVEL,1;LEVEL,0 IN EQ 4 PROVIDE A PATHWAY TO 
TRANSFER LEARNING 

To quantify our algorithm, we begin with the assumption that 
there may exist a Δ-machine learning (ΔML)99−102 algorithm, 
denoted here as , which, when applied to our input data of 
molecular geometries, provides the difference in energy of the 
system between level 1 electronic structure and a lower scaling 
level 0 electronic structure, as follows. 

E ER R R( ) ( ) MBElevel,1 level,0 level,1;level,0 (9) 

This idea is captured in Figure 1a, and such approaches are 
common in several ML-based potential surface methods.99 

However, the complexity of the algorithm , in terms of 
training, will grow rapidly with system size R.103 This is because 
the number of features and weights in an NN model increase 
with system size. Additionally, the training model constructed 
from such a full system study may have limited transferability to 
other related systems. By contrast, in the studies presented here, 
the nodes are chosen as single water molecules and hydronium 
ions, edges are chosen as water-dimers or Zundel cations, and 
higher-order simplexes are protonated and neutral water clusters 
that are also found in other problems. Similarly, in refs 51 and 52, 
we consider single amino acid groups in a polypeptide chain as 
nodes. These fundamental chemical units are prevalent in a wide 
range of problems. Thus, a learning protocol based on such 
fundamental individual constituents of a system, when 
combined with eq 4, we show, will have an impact on both 
reduction in complexity of neural networks and also in creating 
new transfer learning protocols. 
Toward this, given the graphical representation of molecular 

structure described above as { }V V; 0 1 , in a fashion 
commensurate with the inclusion exclusion principle of set-
theory,104 we introduce projection operators, r, , the action of 
each on which on the full molecular system yield, for example, 
the α-th rank-r simplex. A simple Venn diagrammatic illustration 
of these projectors is provided in Section III III.A. This approach 
is then used to obtain a general partitioning scheme, based on 
graph-theoretic decomposition, that we use to create a family of 
orthogonal and potentially complete set of neural networks to 
compute {ΔEα,r 

level,1;level,0}. 
III.A. Orthogonal Molecular Learning Spaces from 

Graph-Theoretic Partitioning. Let us begin with a Venn 
diagram that divides a coordinate representation |x⟩ ⟨x| into 
regions A, B, C, etc. The regions may intersect, and in Figure 2b 
we superimposed the Venn diagram on top of an Eigen cation, 
which is shown in Figure 2a. Thus, the sets divide the electronic 
domain of a molecular system into several regions. Using the 
principle of inclusion exclusion,104 the resolution of the identity 
for the Hilbert space depicted using the Venn diagram may be 
written as 
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| | 

= | | + | | + | | 

| | | | | | 

+ | | 

= + + + 

x x x

x x x x x x x x x

x x x x x x x x x

x x x

I d

d d d 

d d d

d 

A B C 

A B C 

A B A C B C 

A B C 

A B C A B A C B C A B C 
(10) 

where the left side is the identity, since the right side sums over 
the entire Hilbert space represented here through integrals 
involving the dyads, |x⟩ ⟨x|, defined within a chosen set obtained 
from the Venn diagram. Additionally, we also introduced 
projection operators 

| |x x xd A 
A (11) 

that yield parts of the Hilbert space depicted in eq 10. 
Equation 10 arises from the principle of inclusion exclusion104 

from set theory and may be generalized to an arbitrary number 
of sets. However, an alternate approach to divide the space 
represented by the identity operator I can be obtained by 
reintroducing the graph { } V V; 0 1 from Section II (see 
Figure 2c). As before, the graph comprises vertices, V0, edges, 
V1, and rank-r simplexes. An equivalent expression for the 
resolution of the identity in eq 10 may now be obtained in terms 
of projectors that yield domains for nodes, edges, and higher-
order simplexes, and this is given by the following expression. 

=I ( 1)
r 

r r 
r 

V 
,

r (12) 

To make the connections more apparent, we may rewrite eq 12 
in decreasing order of rank, that is 

= 

+ + ··· 

l 
m 
ooo 
n 
ooo 

| 
} 
ooo 
~ 
ooo 

I ( 1) 
V V 

V V 

, 
1 

, 1 

2 

2 
, 2 

3 

3 
, 3 

1 

(13) 

where the appearance of alternating signs is clear and resembles 
that in eq 10. Additionally, for = 1, eq 13 becomes 

= +I
V V

,1 
0 

,0 

1 0 (14) 

which, for the graph in Figure 2c, leads to an identical result as in 
eq 10, constructed for Figure 2b. 
However, the right side of eq 12 is only exactly the identity 

when the upper limit in the summation over “r” (represented as 
below) tends to its maximum possible value, whereas eq 10 is 

always exact by definition. This is a critical difference between 
the top-down set-theoretic approach in eq 10 and the bottom-up 
graph-theoretic approach in eqs 12 and (13). For a completely 
connected graph the maximum possible value of is equal to 
one less than the number of vertices in the graph. When the 
graph is not completely connected, the maximum value of 
yields the problem commonly known as MaxClique,105 which is 
considered to be NP-Complete (NP = nondeterministic 
polynomial time).106 

III.B. Independent Machine Learning Models Edu-
cated from Graph-Theoretic Partitioning. Since the 
collection of all simplexes returns the graph, (see eq 12), 
we envision the collective action of all these projection operators 
on the machine learning algorithm introduced in eq 9 to yield 
a family of fragment (or simplex) learning models, named r, , 
according to 

= 

= 

= 

= 

= 

Ä 

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ 

É 

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ 
( 1)

( 1) ( ) 

( 1)

r 

r r 
r 

r

r r
r 

r

r r 
r 

V 

V 

V 

0 
,

0 
,

0 
,

r 

r 

r (15) 

where 

= 
=

( 1)
r 

r r 
r 

V0 
,

r (16) 

is the truncated (in summation over r) version of eq 12 and is 
educated by graphical decomposition consistent with the form 
of eq 4. In addition 

r r, , (17) 

yields a family of machine learning algorithms, { }r, , 
representing one machine learning algorithm (or one neural 
network) for each fragment. This idea may be clear through the 
distinctions in Figure 1a,b. Furthermore, it is critical to highlight 
that the family of networks, { }r, , are not in any way 
overcomplete, since these resolve the identity as seen in eqs 12 
and (16). 
Thus, using eq 15 it is possible to independently construct 

machine learning algorithms, r, , one for each fragment 

ER r,
level,1;level,0r,

(18) 

and use these in parallel to obtain the quantities in eq 4. 
III.C. Accumulating the Graph-Theoretically Gener-

ated Neural Networks to Obtain a Transfer-Learning 
Approximation to EMBE,gt ONIOM in eq 4. In this publication, we
replace ΔEα,r 

level,1;level,0 in eq 4 with the ML approximations, 
ΔEα,r,ML 

level,1;level,0 , to obtain the following relation. 

Figure 2. In Figure (b), we illustrate the sets A, B, and C for the system 
in Figure (a). Figure (b) is used to construct eq 10. In Figure (c) the sets 
are represented using a graph-theoretic form to make the transition 
from eq 10 to eq 14, which is a special case of eq 12. 
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Thus, neural networks are constructed for the fragments, labeled 
by the dual indices (α,r), and the resultant family of independent 
neural networks are combined based on eq 19 to transfer the 
fragment neural network predictions to a larger system potential 
energy prediction. 
Compared to a direct learning paradigm constructed for the 

left side of eq 19, or the associated level, 1 energy value for the full 
system, the dimensionality of the feature space for fragment data 
are expected to be much smaller than a full system. Second, by 
creating neural networks for ΔEα,r 

level,1;level,0 → ΔEα,r,ML 
level,1;level,0 , we

extrapolate a function that has a smaller range as compared to 
Eα,r 
level,1 . One would expect extrapolations to functions with a 
narrower range to be easier as compared to those with a wider 
range, and this aspect is shown in Appendix B. Finally, another 
advantage arises from the fact that the fragments may be 
universal and present in multiple systems. Hence fragment 
neural networks could be reused for other larger systems, or they 
could provide starting points to construct suitable networks for 
larger systems. This latter aspect is the essence of eq 19, which 
thus provides a new and robust paradigm to construct transfer 
learning protocols. 
A few additional comments are needed with respect to Eq. 19, 

especially given the strong performance of neural network 
potentials (NNPs)107 studied in the literature over the past 
several years.108−116 In refs 108 and 109, AIMD data on small 
molecular systems, such as protonated water clusters, are used to 
construct “energies per atom” embedded within a cluster. These 
energies per atom are then used to additively transfer the 
learning paradigm to larger systems,108−110 thus allowing a 
potentially general approach to obtain energies in larger 
molecular systems. While the approach discussed here, using 
Eq. 19, is complementary to these NNP methods, there are 
critical differences that must be noted here. First, given the 
training protocol to be introduced in Section IV.A, numerical 
advantages exist in regards to the extent of training needed. As 
shown in Table I, the amount of training needed is of the order 
of 5−10% of the total data, with 90−95% serving for testing 
purposes. Thus, our training protocols need far less training than 
is generally used in the neural networks community. For 
example, in ref 108, 90% of the AIMD data is used for training. In 
our case in Table I a far smaller percentage (∼5−10%) of data is 
used for training. Even with such stringent training guidelines, 
the accuracy from the fragment neural networks are on the order 
of 1/100th kcal/mol for the larger molecular fragments and 1/ 
1000th kcal/mol for the smaller molecular fragments as seen on 
the rightmost column of Table I. This may be compared with 
NNPs where the accuracy is on the order of 0.01 kcal/mol but 
measured in terms of energy per atom.108 This error in energy 
per atom when accumulated over the molecular system results in 
larger errors in NNPs as compared to those seen here, as will be 
discussed later in Section V.C. Additional analysis is provided in 
Section V.C and Appendix C. However, more benchmarking is 
necessary and will be carried out in future publications. 
Second, achieving high levels of accuracy in our fragment 

neural networks is critical because, when these networks are 
transferred to larger systems, as allowed by Eq. 19, errors will 
accumulate as the number of fragments grows. A formal 
discussion on the upper bound to errors from Eq. 19 is presented 

in Appendix D. In contrast with the Behler-Parrinallo-type 
neural networks115,117 commonly used for transfer learning-
based potential surfaces,109 Eq. 19 retains the chemical 
environment of subsystems represented as neural networks. By 
using fragments with size up to protonated quadrumers, we are 
able to construct a more accurate protonated heximer potential 
energy surface without systematic shift as compared to that in ref 
109 and will be discussed in Section V.C. 
Arising from such an analysis, in the Results section, we utilize 

two different strategies to prepare neural network models for the 
fragments that are then transferred to the full system. In one case 
we use a fixed maximum error bound in computing all fragment 
neural network models as enforced during the training process. 
For example, we construct neural network models for the 
fragments by increasing the amount of training data until a 
desired accuracy is obtained for the fragment testing data. A 
second approach we used in the Results section is to simply 
utilize a fixed fraction (e.g., 10%) for training purposes. We find 
that the fragment neural networks obtained from the latter 
approach work better in terms of extrapolation of energies to the 
full system, as allowed by Eq. 19. Additionally, given the lower 
levels of training allowed by the technique introduced in Section 
IV.A, the fragment training data can easily be expanded if 
needed. 

IV. COMPUTATIONAL ASPECTS 
We present a new approach to glean training data in Section 
IV.A and discuss our neural network topology in Section IV.B. 
IV.A. Classifying the Training Space for Neural 

Networks. A sampling procedure, called the mini-batch-k-
means clustering algorithm,83 is used to obtain training data to 
define neural networks. The algorithm is an unsupervised 
machine learning method that returns a suitable sample set 
(referred to as centroids) from a given set of molecular 
geometries. The algorithm is a variant of the well-known k-
means clustering algorithm,84,118 which partitions any given data 
space into a set of mutually exclusive regions known as clusters. 

Table Ia 

fragment type training (test) set size training (test) MAE in kcal/mol 

H2O 10 (38 910) 0.004 (0.007) 
H3O+ 10 (17 046) 0.015 (0.073) 
H4O2 100 (62 380) 0.072 (0.090) 
H5O2

+ 300 (77 510) 0.054 (0.088) 
H6O3 700 (46 940) 0.021 (0.087) 
H7O3

+ 2500 (139 580) 0.062 (0.094) 
H8O4 460 (15 750) 0.021 (0.084) 
H9O4

+ 3500 (124 140) 0.068 (0.098) 
aFor each molecular fragment type, obtained from graph-theoretic 
decomposition (left column), the training set size and test set size are 
provided in the center column. The test set is provided within 
parentheses and is more than 10 times larger than the training set. 
The training data are gleaned using a multi-dimensional k-means-
based clustering algorithm discussed in Section IV.A. The accuracy of 
the fragment neural networks is provided on the right column (in 
kcal/mol). For example, for H4O2, the training set size contains 100 
geometries, whereas the test set size includes 62 380 geometries. The 
resultant MAE is 0.072 kcal/mol within the training set and 0.090 
kcal/mol within the test set. The test set in parentheses is composed 
of all data obtained from AIMD including the training set. The test set 
errors are very close to the independent test set errors, which does not 
contain any training data for all fragments (<0.002 kcal/mol), so we 
use the above test set for all analysis in this paper. 
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The standard k-means procedure aims to divide the multi-
dimensional data set, represented here as {ri}, into k clusters, 
named Cj, such that the cost function 

=
r r 

j 

k 

r C 
i j 

1 

2 

i j (20) 

is minimized. Here r ̅ j is the centroid of Cj defined as the average 
value for all ri ∈ Cj. The quantity ri in this publication is obtained 
from the distance matrix corresponding to molecular geo-
metries, as will be discussed below, and these quantities are used 
as input vectors to construct the fragment neural networks 
presented in the next subsection. The cost function in Eq. 20 is 
frequently referred to as the within-cluster sum-of-square, and 
the minimization is usually achieved through an iterative 
procedure. 
The mini-batch k-means algorithm begins with a random 

subset of b geometries. We then initialize the k centroid 
positions r ̅ j also randomly or by using a k-means algorithm on 
the data subset b. Following this another randomly selected 
additional data set of size b, from the original data set, is then 
placed, one geometry at a time, into the cluster spaces formed 
earlier from the centroids. Each newly added data point is 
included within the cluster with the closest centroid, and the 
position of the corresponding centroid position is recomputed 
as the mean value of all data within the cluster. This process is 
repeated until the position of all centroids converge and the 
resultant centroids are depicted using the symbol rj̅, as noted 
above. When this happens, the data point closest to each 
centroid, namely 

= 
l m oo 
n o 

|}oo 
~ o s r r rmin i i jj 

ri (21) 

and its corresponding energy is included as part of the training 
set for the neural networks. 
Thus, in our scheme, the choice of training data is determined 

based on the centroids computed as stated above, and it is a 
critical feature in determining an optimal training data set. The 
mini-batch k-means algorithm provides an approximation to the 
k-means algorithm at much reduced computational cost and 
yields a tessellation9,85−88 of the multidimensional fragment 
conformational space to obtain the needed training data. The 
mini-batch k-means procedure is used, as highlighted above, to 
obtain the training set for all fragments with the goal to 
extrapolate {ΔEα,r,ML 

level,1;level,0} in Eq. 19. 
IV.B. Neural Network Arrays to Compute ΔEα,r,ML 

level,1;level,0 

for Use in Eq. 19. The NN system that we construct to learn 
and predict the simplex structure energy contribution, 
ΔEα,r,ML 

level,1;level,0 in Eq. 19, is composed of a primary neural network 
and an arbitrary number of secondary neural networks arranged 
in series.119 Each secondary neural network is used to learn and 
predict the error from the previous set of neural networks. Thus, 
for the lth neural network, we minimize 

{ } =+ 

E Emin 
W 

r 
i

l 

r 
ML i 

,
level,0;level,1 

1 

1 

,
, 

2 

a a i, 1; (22) 

where ΔEα,r 
ML,i is the output from the i-neural network, and 

{Wa,a+1;i} are the neural network weights for the ith neural 
network to be explained below. 
All neural networks use the same input: x0;l = {1; sj}, where l = 

1···L, for L neural networks connected in series. The quantity sj 

is defined in Eq. 21 and represents the set of training data 
determined based on the k-means methodology described 
above. The number “1” is augmented to x0;l to provide arbitrary 
bias within the neural network. These are used to compute 
hidden and output layers for all neural networks according to 

= · + + +x f W x( )a l a l a a l a l1; 1, , 1; ; (23) 

where fa+1;k represents the activation function for the (a + 1)-th 
layer in the l-th neural network in the series, and {Wa,a+1;l} are 
the weight matrices (including bias) connecting the a-th and (a 
+ 1)-th layers in the l-th network in the series. As seen in Eq. 22, 
each neural network is being trained for a residual error to 
increment the approximation from the previous neural net-
works. Thus, every additional neural network learns from an 
improved baseline provided by all the previous neural networks 

=
E E E r 
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(24) 

and the approximation to ΔEα,r 
level,0;level,1 for a set of L neural 

networks connected in series is written as 

= 
E E r 

l

L 

r 
l 

, ,ML 
level,0;level,1 

1 
,

ML, 

(25) 

In our demonstration of the models constructed here, two 
neural networks are placed in series (i.e., L = 2). Each of these 
neural networks is dense, where the nodes in each layer are 
connected to all nodes in the previous layer. Additionally, the 
number of nodes within a hidden layer is set to be 4 times the 
number of input features, which depends on fragment size. Such 
configurations provide flexibility by offering more hidden layer 
nodes to larger fragments. For each hidden layer, a standard 
rectified linear unit (RELU)120 is used as activation function ( f 
in Eq. 23) on every node. The epochs are set to 1000, which 
implies the training process is done 1000 times to update all 
weights. When the training is completed, an error evaluation is 
performed to verify the quality of the neural network models. 

V. RESULTS AND DISCUSSION 
Protonated water clusters have been extensively studied in order 
to understand proton transfer in membrane ion channels and in 
a wide range of biological processes and materials sys-
tems.15,16,121−128 However, because of the mass of the 
transferring proton, these problems often display nontrivial 
quantum nuclear effects, such as tunneling and zero-point 
effects. These quantum effects are also throught to be 
significantly affected by the polarized nature of the electronic 
structure,10,129−134 which often needs to be treated with 
accurate post-Hartree−Fock methods.129,130,135−137 Hence, 
here we consider as part of our benchmarks the solvated Zundel 
water cluster H13 O6

+, which is thought to play a significant role in 
the fundamental study of proton transfer in condensed-phase 
systems and a variety of chemical, biological, and materials 
problems.13,15,16,18,21,22,138−142 Specifically, the solvated Zundel 
is the smallest protonated system that may contain both Eigen as 
well as Zundel moieties; the interplay between these two 
protonated water species is thought to have a significant role on 
proton migration.131−134 We use a selected set of fragments 
obtained using the k-means tessellation of geometries obtained 
from an AIMD trajectory involving the solvated zundel cation to 
train a family of neural network models, one pertaining to each 
graphically determined fragment. The resultant family of neural 
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network models are then evaluated based on accuracy in 
determining the energies for all configurations within the AIMD 
trajectory. 
This Results section is organized as follows. The AIMD data 

are discussed in Section V.A. In Section V.B we first discuss the 
accuracy and efficiency of the mini-batch k-means clustering 
algorithm in obtaining a multidimensional “gridification” or 
tessellation of all data. The goal here is to obtain the minimal 
data sets needed to accurately construct the machine learning 
fragment energy extrapolation protocol. Once this is done, in 
Section V.C, the neural network models are used to predict 
fragment energies ΔEα,r,ML 

level,1;level,0 to be used in Eq. 19. These are 
then used to predict the full system solvated Zundel potential 
energy at simplex ranks = 3, using Eq. 19, and the results are 
compared with those calculated by full system CCSD on the 
9236 structures obtained from AIMD. At the end we note that 
the mean absolute errors (MAEs) between the solvated Zundel 
CCSD energies obtained using Eq. 19 are in agreement with the 
precomputed CCSD energies to within 1 kJ/mol. 
V.A. Salient Features of the AIMD Training Data Set. 

Ab initio molecular dynamics methods are used in a wide range 
of applications including the study of vibrational properties 
beyond harmonic approximation.10,12,24,122,142−153 However, 
AIMD requires accurate and detailed information about the 
potential energy surface sampled by the system during dynamics. 
This is a challenging computational task that is prohibitive to 
perform globally for any system with more than a few degrees of 
freedom. The problem becomes especially serious when state-
of-the-art electronic structure accuracy, such as coupled cluster 
theory, is also needed. Our goal here is to use training data 
obtained from an AIMD trajectory to create a multidimensional 
potential surface based on the graph-theoretic molecular 
fragmentation protocol amended by machine learning, as 
discussed above and shown in Eq. 19. Thus, our AIMD 
trajectory for the solvated Zundel cation is based on that 
obtained in ref 50 and utilizes the energy function in Eq. 4, along 
with associated gradients, to propagate the nuclear degrees of 
freedom. However, we note at the outset that it is not necessary 
to use an AIMD trajectory computed in this fashion and that a 
trajectory obtained from other levels of theory, or simply 
configurations sampled from a Monte Carlo simulation, may 
also be used as a starting point for our computational framework, 
and these aspects will be considered as part of future 
publications. Furthermore, it must also be highlighted that, to 
construct NNPs, in ref 108 ring-polymer-based AIMD methods 
were used with a goal to sample classically forbidden regions for 
the training set. This was not done here, and as can be seen 
below, the results are in excellent agreement with CCSD 
calculations. Future publications will further evaluate the need 
for such expensive ring-polymer approaches in determining the 
learning data samples, especially when combined with our k-
means protocol. 
In the trajectory obtained from studies in ref 50, CCSD was 

used as level, 1 electronic structure theory and B3LYP is used as 
level, 0 theory as needed in the equations presented above. The 
basis set used for both levels of theory was 6-31+g(d,p), whereas 
the initial geometry was obtained through optimization at the 
B3LYP/6-31+g(d,p) level of theory. The simulations were 
performed using the NVE ensemble, with total simulation time 
of 1.86 ps and time step of 0.2 fs, and the total energy was 
conserved to within a standard deviation of 0.01 kcal/mol with a 
drift of 0.02 kcal/mol over the length of the entire trajectory. 
The average average temperature for these simulations was 162 

± 27 K. This includes a set of 9326 solvated Zundel molecular 
geometries. An oxygen−oxygen radial distribution function for 
this trajectory is shown in Figure 3 and represents the range of 
structures obtained and used for our ML formalism. 

Molecular fragmentation-based energy computations are 
performed for every structure obtained from AIMD, as per the 
previously discussed48−52,54,55,154 protocols for protonated 
water systems. Specifically, we set each oxygen as a node and 
include within the node all hydrogen atoms that are within a 1.4 
Å range from a given oxygen atom. Higher-rank simplexes are 
obtained by combining nodes within a node center distance 
cutoff of 7.5 Å. This distance cutoff allows all nodes in the 
solvated Zundel system to be fully connected, as shown in Figure 

4. Hence the number of simplexes of rank r is +( )r 
6 

1 , as shown 

in Figure 5a. When simplexes for each rank are further divided 
into protonated fragments and neutral fragments, the total 
number of fragments from the entire trajectory are shown in 
Figure 5b. Note that, since hydrogen atoms are considered as 
part of nodes containing oxygens within 1.4 Å, some hydrogen 
atoms can be part of multiple nodes and more than one 
protonated fragment can be obtained in any given structure. For 
example, the number of water and hydronium fragments do not, 
in general, follow the ratio 5:1 (as would be the case if there is 
only one hydronium in each solvated Zundel). Instead, the ratio 
is found to be between 5:1 and 4:2, as shown in Figure 5b. This 
allows for the presence of both Zundel-like as well as Eigen-like 
substructures within the geometries as would result from the 
likelihood of proton hops sampled during dynamics. 
In order to implement rotational and translational symmetry 

of fragments into the neural networks, the set of interatomic 
distances is used as input features in the machine learning 
models. Furthermore, atomic numbers are sorted in increasing 
order before constructing the distance matrix to ensure 
consistent feature types. For example, for a single water 
molecule, the input vector is formulated using hydrogen− 

Figure 3. Oxygen−Oxygen radial distribution function computed from 
the AIMD trajectory used to construct the training set for the ML 
formalism. 

Figure 4. Graphical representation (b) of the solvated Zundel cations 
(a). 
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hydrogen, hydrogen−oxygen, and hydrogen−oxygen distances. 
In this fashion, the fragment geometry R is mapped onto a one-
dimensional distance vector from here on referred to as r. 
V.B. Accuracy and Efficiency of the k-Means Clustering 

Strategy in Creating Training Data for Energy Prediction 
Based on an Ensemble of Neural Networks. We now 
inspect the numerical effectiveness of the k-means clustering 
based learning space characterization described in Section IV.A. 
Toward this, we first introduce a one-dimensional distance 
measure that gauges the spread of fragment geometries 
encountered and is introduced to distinguish the fragment 
structures from each other. To arrive at this one-dimensional 
measure we first compute an average structure from the set of 
distance vectors (represented as ri in Sections V.A and IV.A) for 
each type of fragment as follows. 

=r 
N 

r1 

i 
i 

(26) 

Here N is the total number of input geometries for a specific type 
of fragment. Note that this total number includes all geometries 
of a specific fragment type obtained from all configurations in 

the dynamics trajectory. Next, a reference structure, referred to 
here as rmax, is defined as the structure with the largest distance 
vector L2 norm. 

=r rarg max max 
r

i 2 
i (27) 

We then compute the distance of the i-th structure from the 
average structure in Eq. 26 to define the “directional distance” as 

[ · ] × | |r r r r r rsign ( ) ( )i imax (28) 

where sign [···] represents the “sign” of the term within 
parentheses. 
In Figure 6, the horizontal axis in each figure is labeled as 

“directional distance”, explained above. The vertical axis is the 
energy correction ΔEα,r 

level,1;level,0 relative to the geometry that has 
the lowest value of this quntity. The color represents the density 
of full data for each value of directional distance and ΔEα,r 

level,1;level,0 

values. In Figure 6a,b we note that ΔEα,r 
level,1;level,0 increases as a 

function of the directional distance, whereas, in Figure 6c,d, the 
distribution appears in discrete groups. The reason for this is 
apparent upon inspection of Figures 3 and 7. In Figure 7 the 
solvated-Zundel nodes are labeled A,...,F. For example, for H4O2, 

Figure 5. (a) The average number of simplexes for each rank obtained for each solvated Zundel structure in the AIMD trajectory. The trajectory 
contains 9326 different geometries. The r = 3 fragment calculations are approximately 46 ≡ 4096 times more expensive as compared to the r = 0 
fragment calculations for CCSD accuracy. This publication lowers this expense tremendously, by introducing machine learning techniques as seen in 
Eq. 19. The full data set size for each fragment is shown in (b). 

Figure 6. AIMD data distribution for H2O, H3O+, water dimer, and protonated water dimer. In all cases the horizontal axis represents the directional 
distance in Eq. 28, the vertical axis shows the quantity ΔEα,r 

level,1;level,0 shifted with respect to its minimum value; the color map represents the density of 
data at the respective pair ΔEα,r 

level,1;level,0 and directional distance values. 
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there are five distinct possible combinations of dimer fragments, 
all of which are included in our simulations. These can be 
broadly categorized to include water dimer configurations AC, 
AD, AE, AB, and AF. The configuration CD is generally 
protonated and generally appears as an H5O2 

+. Clearly the five 
dimer configurations are partly distinct, being organized roughly 
into three broad blocks as seen in Figure 6c. These three blocks 
are also reflected in Figure 3 where the oxygen−oxygen radial 
distribution function is provided. For example, as shown in 
Figure 6c, the combinations AC and AD together form the wide 
group of data on the negative side of directional distance, the 
combinations AB and AF form the rightmost group on the 
positive side, and AE provides a sharp distribution in the middle. 
V.B.1. Performance of Mini-Batch k-Means in Constructing 

Fragment Training Data. Our next step is to gauge the 
effectiveness in appropriate coarse-graining of the distributions 
presented in Figure 6 through use of the k-means-based 
clustering algorithm. Our expectation is that the learning data 
constructed from k-means must appropriately model the 
diversity of data present in Figure 6 but also compress this 
data sufficiently so as to lead to efficient learning models. The 
results of our analysis are presented in Figures 8 and 9, where the 
data for each fragment are presented separately. In each case, we 
present three subfigures, where the bottom panel represents the 
behavior of the full data set for a specific fragment type. It must 
be noted that the smaller sized fragments are also shown in 
Figure 6. Thus the bottom panel in each case represents the 
range of structures present in the AIMD trajectory, for which we 
wish to construct a learning model. However, we wish to 
compress the amount of information present in this bottom 
panel and use only a representative sample to construct the 
fragment learning models. This is done using the mini-batch k-
means clustering procedure described in Section IV.A. 
The panels immediately above the full data set in Figures 8 

and 9 represent the distribution of training samples obtained 
from the mini-batch k-means clustering procedure, with far 
fewer number of samples, as compared to total number of data 
points, as is clear from the distribution heights given in the key 
on the right side of each figure. For example, for the case of 
water, there is a 3 orders of magnitude reduction in the number of 
training data set points (k-means centroids) between the top and 
bottom panels in Figure 8a. The associated mean absolute errors 
obtained when the respective compressed data models are used 
to construct the neural networks are also shown in Figures 8 and 
9. In Figure 8a, the 3 orders of magnitude reduction does not 
greatly affect the distribution of ΔEα,r 

level,1;level,0 as a function of 
directional distance, and the associated mean absolute errors 
noted inside each figure are well within the kJ/mol range. In all 
cases the middle panel provide less compression and more 
accuracy. For example, when these resultant centroids are used 

to determine training data, the network model yields an MAE for 
all water molecular fragments on the order of at most 0.01 kcal/ 
mol as indicated in the figure legend. This is indeed remarkable 
and, as we will see, provides a stable algorithm to glean the 
necessary data from a large data set and thus greatly reduces the 
potential for overfitting. As seen in Figures 8 and 9, this behavior 
is rather uniform, and indeed, the k-means clustering procedure 
provides a stable algorithm to obtain the necessary data set to 
construct a learning procedure. This implementation is a critical 
difference in the way we obtain our training data here as 
compared to other neural network models.108 

V.C. Extrapolating the Energies of the Solvated 
Zundel System, through Transfer Learning, using the 
Ensemble of Neural Network Approximations to 
Compute {ΔEα,r 

level,1;level,0} in Eq. 19. We prepared two different 
kinds of learning configuration models to evaluate our transfer 

Figure 7. Graphical representation (b) of the solvated Zundel cation 
(a). The nodes of the graph are labeled with A to F. For clarity, the 
graph is not fully connected in the figure. In real calculation and 
analysis, AB, AF, BE, and EF are also connected. 

Figure 8. Training sample distributions for water, hydronium, water 
dimer, and protonated water dimer are displayed. As in Figure 6, each 
subfigure here shows the density of data (color map immediately to the 
right of each plot) as a function of direction distance (Eq. 28) along the 
horizontal axis and ΔEα,r 

level,1;level,0 along the vertical axis. Each panel 
represents a type of fragment and contains three plots: The bottom plot 
shows the distribution for the full data set (which would be the same as 
in Figure 6). Thus, by full data set we imply all similar fragments from all 
geometries. The two plots above in each panel show the distribution of 
data from the k-means generated learning data sets that use far fewer 
data points. The extrapolation error in ΔEα,r 

level,1;level,0 for each case is 
noted in the figure. Importantly, as one rolls from the bottom panel to 
the top panel in each subfigure, the distribution gets coarser. Thus the k-
means tessellation of learning data appropriately coarse grains the 
learning space, as expected, with well-controlled errors within 1 kJ/mol. 
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learning protocol. In one case we enforce a fixed maximum error 
for each fragment neural network model during the training 
process for {ΔEα,r 

level,1;level,0}. Thus all k-means derived learning 
data are retained within a learning model until the extrapolation 
error falls below a chosen threshold for each fragment type. This 
scheme is referred to below as the fixed fragment error-threshold 
scheme (FES) and evaluates the impact on the transfer learning 
process when the neural network model error is uniform. For the 
second family of neural network models we use a fixed fraction of 
the entire data set for each fragment type during the training 
process. This second approach is referred to below as the fixed 
fragment-data fraction scheme (FFS). The analysis in Appendix 
D provides a rationale for the two types of protocols chosen 
here. This will also become clear from the discussion below. 
Figures 10 and 11 provide a summary of distinction in 

performance between the two approaches. In Figure 10a we 
present the mean absolute error for the FES learning model for 
each fragment (pink dots, right vertical axis) along with fraction 
of data used for training (blue histograms, left vertical axis), 
whereas the corresponding extrapolation error for the use of 
these learning models when used with Eq. 19 is presented in 
Figure 11a. Similarly, the associated information for the FFS 
scheme with fraction of fragment data being less than 10% is 
shown in Figure 10b, with the performance of these neural 
networks when used within Eq. 19 presented in Figure 11b. 
In Figure 10a each fragment energy has an MAE less than 0.05 

kcal/mol. In this case, the largest fraction of data used during the 

training cycle is ∼6% for quartamers, and the training data 
distribution (centroids and errors) is shown in the middle panels 
of Figure 8 and 9. (Compare with the performance of other 
NNP work discussed in Appendix C.) The MAE for the full 
system (solvated Zundel) potential energy constructed from 
such FES models is ∼0.69 kcal/mol (Figure 11a), which is much 
larger than the error in any of the individual fragment models. 
This is caused by the large number of fragments from the graph 
representation in Eq. 4 as can be seen from the ML error 
estimate in Eq. D1. The combinatorial increase in number of 
fragments together with the weight r produces hundreds of 
fragments of each kind on one solvated Zundel molecule. This 
can also be seen in Figure 5 where the number of fragments of 
each type in the overall training model are presented. Clearly the 
number of fragments grows, potentially in a prohibitive fashion 
as noted by the appearance of r in Eq. D1, thus affecting the 
accuracy in such fixed maximum error training models. 

Figure 9. Training sample distributions for water trimer, protonated 
water trimer, water quadrumer, and protonated water quadrumer are 
shown as in Figure 8. 

Figure 10. Figure (a) depicts the errors (right vertical axis) and training 
data set size (left vertical axis) from the fixed fragment-data error (FES) 
protocol described in the text. Figure (b) represents the same for the 
fixed fragment-data fraction (FFS) learning protocol. In the FES 
protocol, we enforce a threshold for the fixed maximum error for each 
fragment neural network model during the training process. Thus all k-
means derived learning data are retained within a learning model until 
when the extrapolation error falls below a chosen threshold. In FFS we 
use a fixed fraction of the data set for each fragment type during the 
training process. The errors are generally lower for FFS but require 
more training data as compared to FES. 

Figure 11. MAE distributions for all solvated Zundel AIMD structures, 
when neural networks are used as allowed by Eq. 19 with = 3. Here 
the two families of neural network models, FES and FFS, mentioned in 
Figure 10 and in the text, are used to to obtain (a) ΔEα,r, ML 

level,1;level,0 and (b) 
ΔEML in Eq. 19, and the distributions are provided. (a) The models are 
trained using the FES approach with samples shown in Figure 10a, and 
the fragment energy errors are retained below 0.05 kcal/mol. (b) The 
models are trained using 10% of all fragment data, as shown in Figure 
10b. The FFS approach uses a larger training set as seen in Figure 10, 
where the training data are chosen using mini-batch k-means, thus 
allowing greater accuracy in extrapolating the full solvated Zundel 
energy. This essentially amounts to a factor of 10 reduction in 
computation effort with an MAE in the kJ/mol energy range. 
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To reduce the full system prediction error, we further improve 
the accuracy for every individual fragment model using the FFS 
learning scheme. In Figure 11b, we raise the number of training 
samples to ∼10% of fragments and produce the second set of 
models. For these models, the accuracy of full system potential 
energy prediction reduces to ∼0.24 kcal/mol (i.e., on the order 
of 1 kJ/mol) and becomes comparable to the expected accuracy 
of standard electronic structure methods as also seen from 
Figure 14 (Also see discussion in Appendix C). 
Thus, in summary, it appears that learning models can be 

constructed to reproduce AIMD data with ∼10% of the effort 
needed as compared to that for the full fragmentation 
calculations. A comprehensive analysis is provided in Figures 
12 and 13, where in each case the horizontal axes refer to results 

from Eq. 19, whereas the vertical axes refer to the energy value at 
the higher level (CCSD) of theory for the full system. Clearly as 
the rank of the expansion in Eq. 19 increases the agreement is 
extremely high between the machine learning model and the 
more expensive higher-level electronic structure treatment. 
Specifically, while the = 1 results (including edges) are 
roughly systematically shifted down, = 2 (faces) does 
appropriately improve; the results from = 3 (rank-4 
simplexes) are then in excellent agreement with the level, 1 
results. Furthermore, including a constant shift to all these 
approximations in Figure 13 does suggest that even the lower 
values of can provide reasonable agreement. These aspects 
will be further evaluated in future publications. 

In Tables II and III we further analyze the performance of our 
approach with the goal of comparing it with the well-known 

NNP approach for potential energy surface extrapolation.109 

These tables complement Table I but now include performance 
data from the FES and FFS protocols. As already seen in Figure 
10, Tables II and III show how the amount of training data 
increases between the FES and FFS protocols. However, in all 
cases the training data are less than 10%, which is in sharp 
contrast with other neural network models for constructing 
potential surfaces. Additionally, we emphasize in the bottom 
rows of Tables II and III that no training is done for the full 

Figure 12. Correlation between machine learning approximations and 
graph-theoretic molecular fragmentation energy, i.e., Eq. 19 and the full 
system high-level energy for all solvated Zundel geometries. Both axes 
are shifted with respect to the same lowest Elevel,1. The black line 
describes the maximum correlation between the two quantities. As the 
rank of fragments (represented by in Eq. 19) increases, the agreement 
improves. However, even at = 1, there appears a simple constant shift, 
as is clear from the shifted plots in Figure 13. 

Figure 13. Similar to Figure 12, but with a constant shift added to all 
energy values from Eq. 19. Figure emphasizes the high degree of 
correlation between the machine-learning approximations and the 
high-level energy for all values of . 

Table IIa 

fragment 
types Training (test) set size Training (test) set MAE in kcal/mol 

H2O 10 (38 910) 0.004 (0.007) 
H3O+ 60 (17 046) 0.039 (0.050) 
H4O2 400 (62 380) 0.024 (0.040) 
H5O2

+ 1000 (77 510) 0.019 (0.044) 
H6O3 1200 (46 940) 0.013 (0.045) 
H7O3

+ 4000 (139 580) 0.040 (0.047) 
H8O4 900 (15 750) 0.038 (0.047) 
H9O4

+ 7000 (124 140) 0.041 (0.044) 
H13O6 

+ 0 (9326) − (0.686) 
aTable complements Figure 10a and 11a and is presented in the same 
format as in Table I but also includes the full system extrapolation 
MAE from Eq. 19 on the last row. On the last row, the “0” and the 
“−” emphasize that no training was done on the full system, and in 
fact the fragment neural networks trained as per the data provided are 
tested both on fragments as well as on the full system, with testing 
errors noted. 
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system, as Eq. 19 provides a well-defined scheme to transfer the 
trained fragment neural networks to the full system. Again, the 
total energies are within the kJ/mol range when the FFS 
approach is used. This may be contrasted with the performance 
of NNPs in ref 109, where an MAE per atom on the order of 0.07 
kcal/mol results in an error upward of 1 kcal/mol in the solvated 
Zundel CCSD(T) energies. 
These results are particularly encouraging, since the 

fragmentation results already are several orders of magnitude 
lower in computational cost as compared to the regular high-
level, post-Hartree−Fock electronic structure calculations. 
Thus, these studies bode well for future accurate and efficient 
AIMD studies at high levels of electronic structure. In future 
publications we will construct on-the-fly learning paradigms 
based on the above protocols to arrive at ML-enabled graph-
theoretic fragmentation methods for AIMD. 

VI. CONCLUSIONS 
In a series of publications, we have shown how a graph-theory-
based molecular fragmentation approach can be used to obtain 
smooth, post-Hartree−Fock AIMD trajectories and accurate 
post-Hartree−Fock molecular potential energy surfaces for 
fluxional systems at DFT cost. Here, a full system is divided into 
individual units that are treated as nodes in a graph. These nodes 
are then connected to form edges, faces, and higher-order 
simplexes as allowed by the graph-theoretic decomposition of 
molecular assemblies and condensed-phase systems. The energy 
and gradients obtained from the molecular fragments associated 
with these simplexes are then computed at two levels of theory, 
as in ONIOM, and then combined with the full-system energy 
(and gradients) obtained at a lower level of theory (DFT here) 
to obtain a graph-theoretic expression that has close connections 
to several molecular fragmentation approaches as well as many-
body approximations. 
However, for polarizable systems, such as protonated water 

clusters treated here, the graph-theoretic decomposition still 
requires higher-order interactions to be included. As per the 
graphical decomposition of molecular and condensed-phase 
systems used in our approach, the higher-order many-body 
interactions are captured from higher-order simplexes depicted 
within the graph. These involve larger-sized molecular fragments 
that need to be processed at post-Hartree−Fock levels of 
electronic structure theory. While these calculations do not 
directly affect the computational scaling of the graph-theoretic 

fragmentation method, since the size of these clusters is 
independent of the size of the overall system, these calculations 
can still be prohibitive when high-order interactions are needed 
to improve accuracy. 
In this publication, we have introduced a machine learning 

approach to extrapolate these higher-level fragment energies. 
We introduce an approach involving an ensemble of neural 
networks, one set of neural networks for each fragment type, that 
helps us to extrapolate post-Hartree−Fock electronic energies 
for larger-size protonated water clusters. Specifically, the higher-
level electronic structure energies for each graph-theoretically 
obtained fragment is extrapolated using a series of cascading 
neural networks, where each neural network provides an 
improvement to the electronic energy approximation arising 
from the earlier set of networks. The training data for these 
neural networks is determined using a multidimensional 
tessellation algorithm known as k-means clustering. 
When the associated fragment neural networks are transferred 

into the original graph-theoretic molecular fragmentation 
expression, we find a general and robust scheme to extrapolate 
the total energy for a larger system where no explicit training has 
been conducted. As a consequence of this, we find that our 
extrapolation techniques combined with neural networks for 
fragments yield energies in agreement with CCSD results in the 
kJ/mol range and shows the potential to reduce the number of 
electronic structure calculations in AIMD trajectory by a factor 
of 10. 

■ APPENDIX A. THE RATIONALE FOR MACHINE 
LEARNING APPROXIMATIONS TO EQ. 4 

It is very clear from the above discussion that the complexity of 
the electronic structure problem could be tremendously reduced 
by using Eq. 4. For example, for a system with M basis functions a 
CCSD calculation would scale as M( )6 . On the contrary, using 
Eq. 4, the computational complexity reduces to 

+ [ × ] + [ × ]M r M r M( ) ( ) ( ) 
r 

3.5
F 

3.5 
F 

6 

(A1) 

where we have assumed that the electronic properties of the 
clusters within each node may be suitably represented using MF 
basis functions within each node, and thus rank-r fragments will 
roughly need [r * MF] basis functions within rank-r fragments. 
The complexity of the Elevel,0 calculation in Eq. 4 is 
approximately M( ) 3.5 (first term above), when the lower 
level of theory is DFT, and for rank-r objects the last two terms 
in Eq. A1 refer to the cost of computing the terms in Eq. 5. 
For small values of , the terms in Eq. A1 are small as 

compared to M( )6 , the computational cost when the full 
system is treated at the CCSD level of theory. But for cases 
where is not negligible, the terms { × }r M(( ) )F

6 may become 
a significant bottleneck. In refs 54 and 56 it has been shown that 

= 2 or = 3 (three-body and four-body interactions) may 
be necessary to obtain very high accuracy in AIMD trajectories 
and in periodic systems. For example, in Figure 5a, we show that 
the number of rank-3 simplexes may grow for strongly 
hydrogen-bonded systems, such as water clusters, where sub-
kJ/mol accuracy is desired as seen in Figure 14. Figures 5 and 14 
are obtained from a set of 9326 different geometries of the 
solvated Zundel [H2 O6 H+] system, obtained from an AIMD 
trajectory where Eq. 4 is computed at every step, and the mean 
absolute error is plotted in Figure 14 in comparison with the case 

Table IIIa 

fragment types training (test) set size training (test) set MAE in kcal/mol 

H2O 3000 (38 910) 0.001 (0.001) 
H3O+ 1700 (17 046) 0.004 (0.005) 
H4O2 6000 (62 380) 0.008 (0.008) 
H5O2

+ 6000 (77 510) 0.012 (0.013) 
H6O3 4000 (46 940) 0.015 (0.016) 
H7O3

+ 12000 (139 580) 0.018 (0.019) 
H8O4 1500 (15 750) 0.029 (0.029) 
H9O4

+ 12000 (124 140) 0.026 (0.027) 
H13O6 

+ 0 (9326) − (0.241) 
aSimilar to Table II. Table complements Figure 10b and 11b and 
includes the full system extrapolation MAE from Eq. 19 on the last 
row. On the last row, the “0” and the “−” emphasize that no training 
was done on the full system, and in fact the fragment neural networks 
trained as per the data provided are tested both on fragments as well 
as on the full system, with testing errors noted. 
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where the full system energy is computed at the CCSD level of 
theory for every geometry. Similarly, Figure 5a shows the 
number of simplexes of each kind. Clearly, while Eq. 4 does 
reduce the complexity, as noted in ref 54, in general, the number 
of higher-rank simplexes may increase thus presenting a 
significant secondary computational challenge as quantified in 
the caption for Figure 5. 

■ APPENDIX B. BENEFITS OF EXTRAPOLATING 
ΔEα,R 

LEVEL,1;LEVEL,0 AS OPPOSED TO Eα,R 
LEVEL,1 OR ELEVEL,1 

FOR FULL SYSTEM 
The machine learning algorithms for { } r, are expected to 
require less training as compared to that for , due to the likely 
exponential scaling of the number of representative nuclear 
configurations with number of nuclear degrees of freedom. That 
is, a higher-dimensional function would generally be harder to 
fit. This effect is shown in Figure 15. For example, in Figure 15, 

the pink dots represent the error in extrapolation when training 
data of size corresponding to the blue histograms is used. If we 
compare the larger protonated water cluster with the smaller 
protonated water cluster, the fraction of data used increases with 
system size while the error remains relatively constant. This is 
also independently true for the neutral water clusters. 
Additionally, one may be curious to ask why the difference in 

energy is used for extrapolation in Eqs. 9 and (18) as against the 
respective level, 1 energy values. In Figure 16 we provide the 
energy range and standard deviation for the difference in simplex 
energy and level, 1 energy. For every simplex generated from a 

solvated zundel system, the Elevel,1 energy range and fluctuation 
are much higher for all types of fragments (Figure 16a) as 
opposed to difference in energies (Figure 16b). The larger range 
and standard deviation in energy values make it harder to 
construct convergent learning paradigms to compute fragment 
Elevel,1 values. 
We also note from Figure 16a,b that the protonated 

subsystems, H3O+, H6O2
+, H7O+

3, and H9O+
4, have a larger 

energy range for both Elevel,1 and ΔEα,r 
level,1;level,0 values. This is 

because the AIMD trajectory used here involves proton hops as 
part of the trajectory. Hence higher-energy configurations are 
sampled as part of the trajectory by the protonated subsystems 
to facilitate proton hops. This is a critical feature of the study 
here as compared to other standard applications of machine 
learning in chemistry. It is common to use machine learning to 
study equilibrium properties. Here, the goal is to also include 
rare events such as proton hops within the learning protocol. 

■ APPENDIX C. A DETAILED COMPARISON OF OUR 
TRANSFER LEARNING APPROACH IN EQ 19 AND 
OTHER NEURAL NETWORK POTENTIAL METHODS 

We explicitly compare our results with those from refs 108 and 
109 where (a) the same system considered here (the solvated 
Zundel cation) is studied using NNPs constructed for smaller 
protonated water clusters and (b) a range of organic molecules 
are studied. In refs 108 and 109, the NNPs are constructed with 
the goal to obtain energies per atom that are then combined 
together to obtain the total energies for any arbitrary systems. 
Tables IV and V provide a brief summary and contrast the 
quality of our results from those obtained previously. The first 
line in both tables includes results from the current work that is 
then contrasted from previous NNP work. We specifically 
distinguish the training data extrapolation error, the transfer data 
extrapolation error, and the fraction of data used for the training 
process. 
First, as highlighted in Tables IV and V, our fragment 

extrapolations need only 10% training to obtain accuracy in the 
1/100th kcal/mol range during the testing cycle. Furthermore, 
this error is for the entire training system energy and not error in 
per-atom energies as is normally reported in the refs 108 and 
109. This aspect is to be contrasted with the results in ref 108 
where the error in energy per atom error is on the order of 0.01 
kcal/mol/atom during the testing cycle. See footnote b in Table 
IV. But this level of accuracy in refs 108−110 requires 80−90% 
of data during the training cycle and 10−20% data during the 
testing cycle that may be contrasted with our training efficiency. 
Since obtaining training data is normally a computational 
bottleneck and entails post-Hartree−Fock calculations, it 
appears that this is may be one key advantage in our approach. 
Second, in our case, the transfer learning process occurs 

through the graph-theoretic fragmentation scheme, that is, eq 
19, where the fragment neural networks appear on the right side 
(with final values given by ΔEα,r,ML 

level,1;level,0). It must also be noted 
that the graph-theoretic fragmentation scheme has independ-
ently been benchmarked over several years, and this NN 
extension to it provides an accelerated transfer-learning 
protocol. At the end, as shown in Table IV, the results for the 
left side of eq 19 have an accuracy in the kJ/mol range when ML 
models are used for the individual terms on the right side. This 
exceeds the accuracy shown by NNPs in ref 109 by nearly a 
factor of 5 and is also seen in the table above. 
It is critical to note that, while all other methods listed in the 

Table I use NNPs to compute energies per atom that are then 

Figure 14. MAE between EONIOMMBE,gt in Eq. 4 and Elevel,1 for all the 
geometries obtained from an AIMD trajectory for the solvated Zundel 
[H2 O6 H+] system. (level,1 is CCSD all through this paper.) The 
trajectory contains 9326 different geometries. 

Figure 15. Percentage of training data used from within the full data set 
of fragments obtained from an AIMD trajectory referred to in Figure 5. 
The error in extrapolation from the neural network models constructed 
from such a training procedure, referred to as r , in Section III, is 
shown using pink dots. The figure shows that, to retain similar errors, 
the training data size grows in a steep fashion with fragment size. 
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accumulated to obtain energies for any other system, our 
approach is fundamentally different in that the NNPs here 
provide fragment energies that are then used within the graph-
theoretic expression to perform the transfer learning process. 
Thus, combined with the limited need for training and higher 
accuracy, we feel that the approach discussed here provides a 
competitive and novel option to creating NNPs. 

■ APPENDIX D. UPPER BOUND TO ERRORS FROM EQ 
19 

By using the ML ideas proposed here, one can easily arrive at 

upper bounds to overall error as 

Figure 16. Average energy range and standard deviation for Eα,r 
level,1 (a) and ΔEα,r 

level,1;level,0 (b) for each type of fragment obtained from a solvated Zundel 
AIMD trajectory mentioned in Section V.A and in Figures 5 and 15. As we will see later the smaller range and standard deviation of ΔEα,r 

level,1;level,0 make 
extrapolation easier. 

Table IV. Summary of Neural Network Potential Performance for Water Clusters with Goal for Coupled Cluster Accuracy 

study training systems test set error (kcal/mol) transfer systems transfer set error (kcal/mol) training data fraction 

this worka (H2O)1;2 0.001; 0.005 H(H2O)6+ 0.24 10% 
H2O)3;4 0.008; 0.013 
H(H2O)1;2 

+ 0.016; 0.019 
H(H2O)3;4 

+ 0.029; 0.027 
H2O 0.021 

ref 108b H(H2O)1;2 
+ 0.048; 0.154 90% 

H(H2O)3;4 
+ 0.171; 0.312 

ref 109c H(H2O)6+ 1.31 
ref 110d (H2O)2; 3 0.079; 0.063 (H2O)4−6 <0.3 81% 

aNeural network MAEs for all fragments produced from graph-theoretic decomposition of solvated Zundel. Training data obtained using k-means 
clustering as discussed in the paper. bThe work provides training data errors on “per atom basis”. In this table we have converted this per atom error 
to total error for the system by simply multiplying by the number of atoms. The actual per atom root-mean-square error for the training systems 
H2O, H3O+, H5O2

+, H7O3
+, and H9O4 

+ are 0.007, 0.012, 0.022, 0.019, and 0.024 kcal/mol/atom, respectively. cThis work uses NN models produced 
in ref 108 for transfer learning and provides the error in per atom basis as 0.069 kcal/mol/atom with a 0.038 kcal/mol/atom shift. Again, the error 
quoted in this table is obtained by multiplying the per atom error with the number of atoms. dAs noted in the paper, neutral water clusters generally 
have a smaller energy range compared to protonated water clusters. Yet our work on protonated water clusters provides similar accuracy for transfer 
learning as for neutral clusters in ref 110. 

Table V. A Summary of Neural Network Potential Performance on Organic Systems with a Goal for Coupled Cluster Accuracyc 

study training systems test set error (kcal/mol) transfer systems transfer set error (kcal/mol) training data fraction 

our work (H2O)1;2 0.001; 0.005 H(H2O)6+ 0.24 10% 
H2O)3;4 0.008; 0.013 
H(H2O)1;2 

+ 0.016; 0.019 
H(H2O)3;4 

+ 0.029; 0.027 
ref 111a H + CH3OH (0.49) 90% 
ref 112a H2 + SH → H + H2S (0.07)b 90% 
ref 113a O2CH, H3S, H4N, (0.13), (0.07), (0.08), 90% 

H5C, H5CO (0.12), (0.09)b 

ref 114 H2O+ + H2 → (0.17)b 90% 
H3O+ + H 

aThese studies provide comparison among multiple types of neural network models. Here we only provide the best error for each system. bErrors 
in parentheses are provided as root-mean-square error. By contrast, the errors in our work are presented as MAE. cOur work is provided here 
simply for completeness. 
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| | | | 
= =r
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V 

ML 

0 
,

ML 

0 r (D1) 

where the left side, | |ML , represents an estimate of the
reconstructed full system mean absolute error. On the right 
side, the quantity | | r, 

ML represents the MAE for the neural
network constructed for a specific fragment type, depicted here 
using indices (α, r). Furthermore, an estimate of the total neural 
network error for a given rank is represented as r with r being 
the total number of fragments of a given type or given simplex 
rank, in one full system geometry. Clearly for complex systems, 
the error will be dominated by the size of r and there will be a 
need to drive down the errors r so as to maintain the products 

r r to within acceptable accuracy. Furthermore, eq D1 only 
provides an estimate, and the true error for full system is also 
affected by the alternating signs of individual fragment errors as 
seen from eq 4, which may lead to some degree of error 
cancellation. Regardless, the error for the full system is expected 
to be far greater than individual neural-network model errors 
because of the number of fragments r , as we will discuss later in 
Section V. 
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