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Abstract 
The accurate computational determination of chemical, materials, biological, and atmospheric properties has critical impact on a 
wide range of health and environmental problems, but is deeply limited by the computational scaling of quantum-mechanical 
methods. The complexity of quantum-chemical studies arises from the steep algebraic scaling of electron correlation methods, and 
the exponential scaling in studying nuclear dynamics and molecular flexibility. In this article we provide an overview of the 
challenges involved in performing accurate post-Hartree-Fock electronic structure and quantum nuclear dynamics calculations on 
quantum hardware. For electronic structure, we present a procedure to drastically reduce the depth of quantum circuits and 
improve the accuracy of results in computing post-Hartree-Fock electronic structure energies for large molecular systems. The 
method is based on molecular fragmentation where a molecular system is divided into overlapping fragments through a graph 
theoretic procedure. This allows us to create a set of projection operators that decompose the unitary evolution of the full system 
into separate sets of unitary processes, some of which can be treated on quantum hardware and others on classical hardware. 
Thus, we develop a procedure for electronic structure that can be asynchronously spawned on to a potentially large ensemble of 
classical and quantum hardware systems. We also discuss a framework which allows for the solution of quantum chemical nuclear 
dynamics by mapping these to quantum spin-lattice simulators. This mapping procedure allows us to determine the local fields 
and spin-spin couplings needed to identically match the molecular and spin-lattice Hamiltonians and hence the resultant 
dynamics. 
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Key Points 

• Quantum chemical dynamics simulations are severely hindered by the computational complexities of obtaining accurate 
potential energy surfaces and of performing quantum nuclear propagation. 

• Electronic structure simulations are held back by the need for exponential increase in circuit depth in current quantum 
algorithms, causing significant propagation of errors. 

• Graph theory based projection of quantum circuits, or quantum circuit fragmentation, can provide an approach to curtail 
circuit depth, provide quantum circuit based many-body approximations and control accuracy. 

• The complexity in performing quantum chemical dynamics increases exponentially with the number of quantum nuclear 
dimensions. 

• Control maps between quantum chemical dynamics Hamiltonians and spin-lattice Hamiltonians can be used for 
simulation of nuclear dynamics. 

• Asynchronous and parallel quantum algorithms that seamlessly integrate classical and quantum architectures, such as 
those discussed here, may yield improved simulation of dynamics and structure. 
1 Introduction 

Computing accurate molecular properties, including the effect of electron correlation and nuclear dynamics, is at the heart of 
modern computational quantum chemistry, with potential impact on materials discovery,1–3 and the accurate study of 
biological4–10 and atmospheric11–13 processes. However, such studies are deeply confounded by (a) the steep algebraic compu-
tational scaling of accurate electron correlation methods,14–17 where, for example the gold standard of electronic structure theory, 
namely CCSD(T)15,18 scales as O N67ð Þ, and (b) the exponential scaling of quantum nuclear dynamics with its degrees of 
freedom.19 Over the years several classical algorithms have been developed to improve the computational scaling of both 
problems.20–24 Orthogonally, the promise of solving exponentially complex problems efficiently using novel quantum computing 
hardware and associated software is a rapidly evolving research frontier,25,26 and there are already diverse set of important scientific 
and technological challenges in artificial photosynthesis, computational catalysis, and structure-based drug design or vaccine 
development for human health that can benefit from such developments. 

In this article, we discuss critical challenges for developing quantum algorithms for modeling complex chemical processes. This 
article is organized as follows: In Section 2 we discuss quantum computing for electronic structure methods, whereas in Section 3 
we discuss mapping protocols for quantum nuclear dynamics and spectroscopy. Chemical problems studied using these 
approaches are summarized in Sections 4 and 5, and conclusions and future directions are given in Section 6. 
2 Quantum Computing Methods for Electronic Structure 

Recently, multiple quantum computing technologies, such as ion-traps,27–30 superconducting coils,31,32 Bosonic processors with 
photons,36,39 solid-state devices and quantum dots inside cavities,36,39 and Rydberg atoms40–42 have emerged as potential 
alternative computational platforms to address complex computational challenges. Additionally, algorithms to approximate 
electron correlation problems,43–64 for small molecular systems, and quantum nuclear dynamics problems65–72 have been 
implemented on quantum hardware devices. The mapping of most electron correlation problems to quantum hardware is 
facilitated by the Jordan-Wigner, parity, or Bravyi-Kitaev transformations,73–75 where a product of Fermionic creation and anni-
hilation operators, as these arise within a second quantized version of the electronic Hamiltonian, are transformed to a chain of 
Pauli spin operators. Many groups43,44,51,52,54,63,64,76,77 have contributed greatly to the development of new quantum circuit based 
methodologies to compute the electronic structure in small molecular systems on quantum hardware. However, most of these 
efforts are deeply hindered by the so-called quantum circuit depth problem25,26,78,79 where the complexity of the quantum circuit, 
along with the limited fidelity of the quantum gates currently available on state of the art quantum hardware, lead to an enormous 
increase in error propagation and leads to unstable implementation. This provides a strong upper bound on accuracy, system size 
and levels of basis functions that can be implemented on currently available quantum hardware. 

As shown in Fig. 1, application of standard quantum circuit models80 to treat electronic structure problems leads to a rapid increase in 
the circuit depth and the number of CNOT gates. This contributes greatly to the accumulated error during quantum propagation. Quantum 
gate fidelity for CNOT gates is generally of the order of 95%81 and the improvement of such gate fidelity is an active area of quantum 
hardware development.82 This is related to the fact that the CNOT gates require maximally entangling XX(p=2) gates and hence have lower 
quality performance81 as compared to small angle XX gates and this aspect contributes to error propagation. As seen in Fig. 1, the number of 
quantum gates, the number of CNOT gates, and circuit depth increase exponentially with system size. This leads to a dramatic increase in 
the error in quantum propagation thus restricting both size and quality (in terms of basis set sizes that can be routinely used) of 
performance. Thus, despite the growing set of available quantum hardware platforms, and the accompanying set of complex quantum 
algorithms, performing accurate, state-of-the-art quantum chemical calculations will remain a significant challenge for the foreseeable future. 



Fig. 1 Quantum circuit depth complexity as a function of system size is illustrated here for a family of H2 ð Þn-clusters. As system size grows, a 
standard quantum circuit implementation afforded by the commonly used Qiskit, 80 a quantum software development kit for obtaining and 
executing quantum circuits on quantum hardware, becomes prohibitively complex. Figure reproduced from Ref. 83. 
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Given these challenges to quantum computing of molecular electronic structure, this section outlines a hybrid quantum/ 
classical algorithm, based on a graph-theoretic reduction of molecular structure, and is applied towards performing electron 
correlation calculations on an ensemble of quantum and classical hardware systems. The algorithm is a referred to as “Graph-|Q〉〈C|” 
since it contains an independent set of classical and quantum algorithmic components inside one umbrella.83 To achieve this, in 
Section 2.1 we introduce a general projection operator formalism that when applied to any complex quantum circuit, in 
Section 2.2, reduces the circuit into a family of parallel quantum circuits, each of much lower complexity. In the results section we 
then show that this approach reduces the quantum circuit depth problem shown in Fig. 1, by several orders of magnitude. The 
overall computational workload is partitioned, through graph-theory based on computational complexity analysis, into (a) 
classical computing sections that are carried out on traditional classical electronic structure packages, such as Gaussian,84 Psi4,85 

Orca86 and Quantum Espresso,87 and (b) quantum computing sections that are carried out using the quantum circuit models. 
Furthermore, the Graph-|Q〉〈C| algorithm is quantum hardware agnostic and is developed with the goal to be implemented on all 
quantum hardware technologies, and in fact, is designed to be used on an ensemble of such quantum hardware systems for any 
given calculation. Graph-|Q〉〈C| is complementary to other ideas in the literature54,60–62,64 that attempt to reduce quantum gate 
complexity, and reduces the required quantum circuit depth, the number of quantum gates, and the number of CNOT gates (by 
several orders of magnitude) that contribute to error accumulation. Given this reduction, Graph-|Q〉〈C| improves quantum 
algorithmic efficiency, provides a new avenue for quantum resource management, and also may reduce the accumulation of errors 
during electronic structure calculations on quantum hardware. 
2.1 A Hilbert Space Decomposition Scheme Using Venn diagrams and Graphical Decomposition 

We begin with a Hilbert space decomposition scheme using the set-theoretic inclusion-exclusion principle.88 The projection 
technique is then adapted to a graph problem, which in the next subsection is used to decompose any arbitrary unitary operator 
(or quantum circuit) into parallel, but overlapping, streams of computing processes that can be executed on a cluster of quantum 
and classical hardware systems. 

Let us begin with a Venn diagram that divides a coordinate representation |x〉〈x| into regions, A, B, C, etc. The regions may 
intersect and in Fig. 2(a), for concreteness, we have superimposed the Venn-diagram on top of a H2 molecular cluster. Thus, the 
Venn diagram divides a molecular system into several regions. Using the principle of inclusion exclusion,88 the resolution of the 
identity for the Hilbert space depicted within the Venn diagram may be written as 

I  
Z 

A,B,C 

dxjx〉〈xj ¼  
Z 

A 

dxjx〉〈xj þ  
Z 

B 

dxjx〉〈xj þ  
Z 

C 

dxjx〉〈xj 

Z 

A-B 

dxjx〉〈xj   
Z 

A-C 

dxjx〉〈xj   
Z 

B-C 

dxjx〉〈xj þ  
Z

A-B-C 

dxjx〉〈xj 

¼PA þ PB þ PC  PA-B  PA-C  PB-C þ PA-B-C 

ð1Þ 

where the left side is the identity since it sums over the entire Hilbert space represented here by sets A, B, and C, and integrals 
involving the dyadic terms, |x〉〈x|, are within a chosen set depicted within the Venn diagram. Additionally, we have also introduced 
projection operators, that project out portions of a Hilbert space depicted in Eq. (1) and only include the portion of the diadic sum 
within a given set. 



Fig. 2 In Figure (b), we provide an illustration of the sets A, B and C for the system in Figure (a). Figure (b) is used to construct Eq. (1). In Figure (c) 
the sets provide a graph-theoretic form to make the transition from Eq. (1) to Eq. (4) clear. Figure (c) can be realized through Eq. (6) which is a special 
case of Eq. (4). 

Fig. 3 Here, a cluster of 16 hydrogen molecules is represented as a graph. This graph presents a distance based truncation of expensive electron 
correlation treatments. This graphical representation also allows for the reduction in complexity for the quantum circuit representation of the 
systems discussed later in this paper. 

4 Quantum Algorithms for the Study of Electronic Structure and Molecular Dynamics: Novel Computational Protocols 
PA  
Z 

A 
dxjx⟩⟨xj ð2Þ 

While Eq. (1) arises from the principle of inclusion exclusion88 well-known in set-theory, and can be generalized to an arbitrary 
number of sets, an alternate approach to divide the molecular space represented by the identity operator, I, can be obtained by 
introducing a graph decomposition of molecular structure. To begin with, the molecular assembly, similar to that in Fig. 1, is  
partitioned into a set of nodes, or vertices. These nodes may be determined on a chemical basis or numerical basis, and first-order 
interactions between these discrete nodes are captured by creating edges, that are the union of a pair of nodes. Once the nodes and 
edges are defined, the chemical system of interest is now represented as a graph (An illustration of our graph-theoretic partitioning 
of molecular structure is presented in Fig. 3). 

In our discussion below, the set of nodes described above is represented as V0. Similarly, the family of edges that represent all 
first-order interactions between nodes are represented as V1. Together these nodes and edges define a graph, G  fV0; V1g (see 
Fig. 3). The graph, thus, comprises nodes, V0, edges, V1 and rank-r objects, known as simplexes89–91 (Simplexes are defined as 
geometric objects with an arbitrary number of vertices, where all pairs of vertices are connected89–91). The set of such rank-r objects 
is represented as Vr : 

fVr j r ¼ 0;1;2;⋯g   V0;V1;V2;⋯f g: ð3Þ 
and these capture all needed higher-order interactions between the nodes. 
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An equivalent expression for the resolution of the identity in Eq. (1), may now be obtained in terms of projectors that 
encompass nodes, edges, and higher order simplexes as 

I¼ 
P 

aAV0 

M 0 
a Pa;0  

P 

aAV1 

M 1 
a Pa;1þ 

P 

aAV2 

M 2 
a Pa;2  ⋯ 

¼ 
XR 

r ¼ 0 

ð1Þ r 
X 

aAVr 

M r a Pa;r 

ð4Þ 

Here, Mr 
a  

PR 
m ¼ r ð1Þmpr;m 

a

h i 
and pr;m 

a are the number of times the ath rank-r term (in set Vr ) appears in all rank-m terms (in 

set Vm), for m  r. Consequently Mr 
a is the overcounting correction for the number of times the ath rank-r term appears in all 

objects of rank greater than or equal to r. It must be noted that pr;m 
a are also the number of supersets of the ath rank-r simplex, and 

the projectors, Pa;r , yield the a-th rank-r simplex. 
The parallels between Eq. (4) and Eq. (1) may be further explored by rewriting Eq. (4) in decreasing order of rank, that is, 

I ¼ ð1Þ R P 

aAVR 

Pa;R  
P 

aAVR1 

M R1 
a Pa;R1 þ 

P 

aAVR2 

M R2 
a Pa;R2  

P 

aAVR3 

M R3 
a Pa;R3 þ ⋯ 

( ) 

ð5Þ 

where the appearance of alternating signs is clear and resembles that in Eq. (1), and the factor, MR1 
a is the number of times the 

a-th rank- R  1ð Þ simplex appears in all rank-R simplexes. Additionally, for R¼  1, Eq. (5) becomes 

I¼   
X 

aAV1 

Pa;1 þ 
X 

aAV0 

M 0 
a Pa;0 ð6Þ 

which, for the graph in Fig. 2(c), leads to an identical result as in Eq. (1), constructed for Fig. 2(b). 
2.2 Quantum Circuit Depth Reduction Through Parallel Quantum Processing Using the Projection Operators, Pa;r 
  

We now begin with a quantum circuit depicted using the symbol, U, a unitary operator, that propagates a state that represents the 
electronic structure for the full molecular system on some quantum hardware system. However, as noted in Fig. 1, the complexity of 
such a circuit and the associated resources may grow rapidly as system size grows. To overcome this issue, we may apply the graph-
theoretically defined resolution of identity in Eq. (4) to U to decompose it into a family of parallel quantum circuits given by 

I U ¼  
XR 

r ¼ 0 

ð1Þ r 
X 

aAVr 

M r a Pa;r U 
  

¼ 
XR 

r ¼ 0 

ð1Þ r 
X 

aAVr 

M r a Ua;r 

ð7Þ 

where 

Ua;r  Pa;r U 
  ð8Þ 

represent here a set of projected quantum circuits, one for each simplex. When a molecular system is divided using the graph, the set 
Ua;r 

  
yields one quantum circuit for each molecular fragment. This is illustrated in Fig. 4. 

2.3 Many-Body Expansions From the Quantum Circuit Decomposition 

We use the individual quantum circuits, Ua;r 
  

, to obtain a family of fragment energies EUCCSD 
a;r

n o 
, using quantum circuit models

using the Unitary Coupled Cluster Singles and Doubles (UCCSD) approach,83 that when used in Eq. (7), yields 

EMBEUCCSD 
jQ〉〈Cj ¼ 

XR 

r ¼ 0 

ð1Þ r 
X 

aAVr 

EUCCSD 
a;r M r a ð9Þ 

Eq. (9) yields a stream of parallel quantum processes. This idea is presented in Fig. 4. Since these independent circuits, Ua;r 
  

, 
are for much smaller fragments as compared to the full system of interest, one may find the error propagation to be limited. We 
indeed show this to be the case for the examples discussed later. 
2.4 Improving the Accuracy of the Quantum-MBE Through Extrapolation 

The above graphical description allows a dynamic and flexible representation of local many-body interactions. We now discuss a 
composite energy measure that has been shown to converge faster as a function of maximum rank-R92,93 for ground state post-Hartree-
Fock energies, AIMD trajectories and multi-dimensional potential calculations using post-Hartree-Fock energies and gradients. The ener-
getic measure we begin with,92–102 is a composite expression103–107 and consists of a perturbative, ONIOM-type,108 correction to a result 
obtained at a lower level of theory, where the perturbative correction is the difference between two many body expansions (replacing the 



Fig. 4 Implementing Eq. (9) on quantum hardware using the graph partitioning approach. The second-quantized Hamiltonians for node/edge/face 
fragments, with molecular orbitals obtained from Hartree-Fock, are used as the input for Qiskit,80 to obtain the quantum circuits shown on the 
right side of the figure, one circuit for each fragment. Figure reproduced from Ref. 83. 
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standard “model-high’’ minus “model-low’’ portion in ONIOM) given by the graphical representation above. Thus, 

EextrapUCCSD 
jQ〉〈Cj ðxÞ ¼ EDFT ðxÞ þ EMBEUCCSD 

jQ〉〈Cj ðxÞ  EDFT 
MBE ðxÞ ð10Þ 

where the left side, EextrapUCCSD 
jQ〉〈Cj ðxÞ, denotes the graph-theoretically obtained many-body extrapolation to UCCSD, and the term 

EMBEUCCSD 
jQ〉〈Cj ðxÞ on the right side incorporates the value from Eq. (9) at geometry x. The quantity, EDFT 

MBE ðxÞ is a similar expression computed 
classically that is, 

EDFT 
MBE ¼ 

XR 

r ¼ 0 

ð1Þ r 
X 

aAVr 

EDFT 
a;r M r a ð11Þ 



Fig. 5 Fig. 4 presents a quantum circuit decomposition based on graphical partitioning of molecular systems. This helps compute EUCCSD 
a;r 

n o 
. To

compute the lower scaling EDFT 
a;r ; E

DFT 
n o 

, we use classical computing algorithms as seen on the left side of the figure here.
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Thus, the algorithm here envisions spawning out a family of processes on an ensemble of classical and quantum systems, and 
this process is depicted in Fig. 5, and in more detail, in Fig. 6. The resultant final energy expression in Eq. (10), while presented 
here for quantum-computing applications, is closely related to multiple ONIOM-based,108–114 molecular fragmentation 
methods107,114–128 as well as developments in many-body theory.118,119,129–138. Eqs. (9), (10) and (11) have been actively 
benchmarked for classical computing studies on AIMD and for potential energy surfaces for gas-phase and condensed phase 
systems,92–101 and also provide novel approaches to reduce the complexity of the training cycle in machine learning treatments.139 
2.5 Computational Aspects 

As stated in Fig. 5, the quantity EDFT 
a;r is computed on classical hardware systems, whereas, the quantity EUCCSD 

a;r , is to be computed 
on quantum hardware using the quantum circuits Ua;r , as facilitated by the graph-theoretic partitioning method. 

Fig. 5 provides a brief overview of the algorithm which is further elaborated upon in Fig. 6. Specifically, once the graph is 
defined, based on its connectivity and the value of R, a range of constituent molecular fragments are obtained, each labeled using 
the pair of symbols, a; rð Þ, in  Eq. (7); these fragments may be pre-determined on classical hardware for relatively small values of R. 
The process of defining a graph itself is controlled by two parameters, the maximum edge length cutoff which is determined based 
on the physical range of interactions to be captured, and the maximum order (or rank) of the many body terms which is 
represented using the symbol R. As the maximum edge length increases, the fragments grow in number and size rapidly, thus 
increasing computational complexity while also presenting a significant challenge for parallel processing. Edge length cutoff may 
be chosen to be high enough to include all critical interactions. 



Fig. 6 The algorithm has classical as well as quantum counterparts. Also see Fig. 5. 
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Once the graph is generated the system is decomposed into a set of fragments, that can be processed in an asynchronous
manner. A stream of fragments is thus generated with the goal to compute EUCCSD ða; rÞ ; EDFTða; rÞ   

and EDFT for the full system. In 
Refs. 92,93, this is done through an MPI parallelized hybrid C þ þ /Python module. The implementation of the approach on 
classical computing platforms currently supports the following set of external electronic structure packages during a single energy 
and gradient evaluation: Gaussian,84 ORCA,86 and Psi4,85 for molecular and cluster calculations, and Quantum Espresso,87 and 
OpenMX140 for condensed phase studies. In Ref. 93 this aspect is further expanded to also include the use of quantum algorithms 
to determine, EUCCSD . (See Figs. 5 and 6.). 

While our approach will address all of these challenges, by reducing the needed circuit depth, in this publication we discuss the 
principle behind our execution model for accuracy purposes. Furthermore, as we will see later, it is straightforward to integrate the 
current scheme into other circuit optimization techniques,141,142 to further increase the size of systems that can be studied, and this 
will be considered as part of future publications.

The following steps are used to obtain EUCCSD 
a;r 

n o 
with quantum algorithms

1. Hartree-Fock orbitals for each molecular fragment are classically pre-computed to create a family of second-quantized Fer-
mionic Hamiltonians, and these are together provided as input to the Qiskit quantum computing framework,80 as shown on 
the bottom right portion of Fig. 6. 

2. The family of fragmented second-quantized Fermionic Hamiltonians are then converted into quantum circuits, Ua;r 
  

, using a 
parity mapping protocol.143 

3. Each fragment quantum circuit is then executed on Qiskit’s built-in statevector simulator without using a noise model, and the 
resultant energies are optimized using the SLSQP optimizer144 available within VQE.51 This yields the family of UCCSD 
energies, EUCCSD ða; rÞ  

used to obtain the molecular energy as per Eqs. (9), (10) and (11).

The hybrid quantum/classical formalism developed here is transparent to the underlying quantum mapping protocol used to 
convert the Fermionic Hamiltonians for each individual molecular fragment into quantum circuits. Thus there are no restrictions 
on the kind of map used to treat each individual fragment Hamiltonian, and in principle we can use the Jordan-Wigner,73 Bravyi-
Kitaev75 or parity mapping143 transformations. Here, we have tested the Jordan-Wigner scheme as well as parity mapping protocol, 
and we find that the latter does in fact reduces the qubit resources needed as suggested in Ref. 143. Specifically, for each quantum 
circuit, two qubits are reduced with the spin-parity symmetries of the system,143 as a separate optimization technique. 
2.6 Generality of the Graph-|Q〉〈C| Algorithm 

It is critical to emphasize at this stage that it is now accepted25,26 that universal, fully fault-tolerant, quantum computers are a 
rather distant dream,25 and new frontiers such as Noisy Intermediate Scale Quantum (NISQ)25 systems have emerged. To 
effectively use such NISQ machines with their limited coherence times, a hybrid approach that interleaves NISQ machines with 
classical computers has been proposed in Ref. 26. This is complemented by orthogonal developments in quantum chemical 
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algorithm developments where the variational quantum eigensolver (VQE)63,64 is already known to be a hybrid quantum-classical 
approach. In this regard, our approach here, containing quantum and classical algorithmic components, is a contribution that can 
be used for ground state quantum chemical calculations at enhanced accuracy with lower computational complexity92,93,96–98 on a 
hybrid stream of quantum and classical systems. The algorithm is built to be asynchronous and parallel, and these computational 
aspects will be considered in a future publication. 

Furthermore, there have been several recent studies that allow the implementation of variational quantum algorithms such as 
the Variational Quantum Eigensolver (VQE),43,44,51,52,54,145 in combination with an appropriate trial wavefunction such as the 
Unitary Coupled Cluster (UCC) ansatz146,147 on quantum simulation systems. The approach discussed here is general enough to 
allow the possibility to include other eigensolvers apart from VQE, such as the recently developed contracted quantum eigensolver
(CQE)77 to compute the set of EUCCSD ða; rÞ   

values from the associated two-particle reduced density matrices.
 

3 Quantum Computing Methods for Quantum Molecular Dynamics and Spectroscopy 

The implementation of multi-dimensional molecular dynamics studies on quantum hardware is complicated by multiple factors. 
Molecules contain many correlated nuclear degrees of freedom, and each of these correlated nuclear degrees of freedom needs to 
be represented in some discretized basis. If we assume N discretizations (or basis vectors) per nuclear degree of freedom and N 
nuclear degrees of freedom, the complexity of information grows approximately as N N . This includes both the effort involved in 
computing potential energy surfaces using accurate post-Hartree Fock methods, such as those discussed in the previous section, 
and also computing the quantum nuclear propagation. As a result, quantum nuclear dynamics is thought to be an exponentially 
hard problem. 

In contrast to the many electronic structure algorithms currently being developed43–59 for implementation on quantum 
hardware, the intrinsic spin statistics of quantum nuclear dynamics problems, arising for the nuclear permutation symmetries do 
not have a role under conditions prevalent in biological, materials, and atmospheric systems, such as hydrogen transfer reactions 
under ambient conditions. As a result, most such quantum dynamics studies are currently constructed on classical computing 
platforms using basis sets and on grids. Furthermore, many of these problems are known to display anomalous nuclear quantum 
effects9,148,149 that are challenging to study on classical hardware due to the exponentially scaling computational cost of quantum 
dynamics with increasing degrees of freedom. Unlike several recent attempts on the electron correlation problem,43–59 approx-
imating quantum nuclear dynamics problems on quantum computing platforms has received relatively less attention.65–71 

This section shows a mapping protocol that allows the study of quantum nuclear dynamics problems on quantum hardware 
that do not require knowledge of the spin statistics obeyed by the constituent systems. We discuss an approximate algorithm to 
map exponentially-scaling quantum nuclear dynamics problems on a single Born-Oppenheimer surface, onto a general class of 
Ising-model Hamiltonians. Such Ising-type Hamiltonians may be implemented on a range of quantum computing platforms, such 
as ion-traps,27,28,150–152 super-conducting coils,31 Bosonic processors with photons,33–35 solid state devices and quantum dots 
inside cavities,36–39 and Rydberg atoms. 40,42 

The most significant features of the mapping algorithm are summarized in Fig. 7, with a more detailed illustration 
provided in Fig. 8. An example of a quantum nuclear problem is shown in Fig. 8a and  also  on  the left side of  Fig. 7. Here we  
depict a system containing a short-strong hydrogen bond with anharmonic vibrational behavior along the donor-acceptor 
axis. This problem is prototypical and is representative of a broad range of systems that occur during hydrogen transfer 
reactions148 and in hydrogen-bonded systems that are known to have significance in many critical processes.153 We pre-
compute the Born-Oppenheimer potential using electronic structure calculations, perhaps in future using the techniques from 
the previous section, and obtain a discrete version of the quantum nuclear Hamiltonian. To map this Hamiltonian onto a 
spin-lattice Ising-type model, the key insights in this paper are as follows: (1) A projected subspace of a specific unitary
Fig. 7 Figure outlines the critical features of our mapping algorithm. The Born-Oppenheimer potential as well as kinetic energy portions of the 
molecular Hamiltonian are mapped to control parameters, Bz 

i

   
; Jx 

ij ; J
y 
ij ; J

z 
ij

n on o 
, of a Ising-type spin-lattice simulator. 



Fig. 8 The algorithm converts the Born-Oppenheimer potential surface and kinetic energy terms in a quantum-nuclear problem to a set of 
controllable parameters and facilitates the dynamical evolution of quantum states in an ion-trap. Box (a) shows the Born-Oppenheimer potential 
and kinetic energies for a short-strong hydrogen bonded system. This system Hamiltonian is mapped onto an ion trap quantum simulator shown 
in box (b). Discrete representation of the nuclear Hamiltonian and appropriate rotations yield ion-trap parameters, f Bz 

i

   
; fJx 

ij ; J
y 
ij ; J

z 
ij gg, to  

determine the Ising model used to control the dynamics of lattice spin-states. Also see Fig. 7. 
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transformation of the diagonal elements of the quantum nuclear Hamiltonian (related to the Born-Oppenheimer potential) 
maps to and defines the local magnetic fields applied on each lattice site of an Ising model Hamiltonian. (2) A similarly 
projected subspace of a related unitary transformation of the off-diagonal elements of the quantum nuclear Hamiltonian 
(related to the nuclear kinetic energy operator) defines and is mapped onto the inter-site coupling terms in the Ising model. 
These features of our map are highlighted in Fig. 7. 

Importantly, this approach is different from the standard circuit model,154 and here, the matrix elements of the nuclear 
Hamiltonian that describe the molecular dynamics, inform the choice of local magnetic fields applied on each physical qubit (or 
lattice) site and laser pulse intensities that dictate the inter-site coupling, and govern the dynamics of the ion-trap quantum 
platform. 

This Section is organized as follows: In Section 3.2, we inspect the block structure of the Ising Hamiltonian which informs 
the general class of problems that may be computable on hardware architectures used to realize such Ising-type Hamilto-
nians. Following this, we then introduce the quantum nuclear Hamiltonian matrix on a single Born-Oppenheimer surface in 
Section 3.3 and a class of Givens rotations155 based matrix transformations in Section 3.4 to represent the quantum nuclear 
Hamiltonian matrix in a form that is commensurate with the transformed form of the Ising model Hamiltonian in Section 3.2 
This transformation leads to our approximate mapping protocol that is outlined in Section 3.5. Numerical results for the 
anharmonic molecular vibrations of the shared proton in a symmetric short-strong hydrogen bonded system are provided in 
Section 5. These include explicit numerical propagation of both the molecular dynamics problem as well as the spin lattice 
dynamics governed by Ising-type Hamiltonian where the Ising Hamiltonian parameters are chosen based on the mapping 
protocol in Section 3.5. The results match exactly for the case of three-qubits and error estimates beyond three-qubits 
discussed in Ref. 72. 
3.1 The Generalized Ising-Like Hamiltonian Programmable on a Variety of Quantum Devices 

Ising-type Hamiltonians can be implemented on a range of available quantum computing platforms,27,28,31,33,40–42 which makes 
these one of the most commonly-used quantum computing models today.28,156 However, for specificity, we will illustrate our 
mapping protocols for ion-trap based quantum architectures, where ions form defect-free arrangements and can support quantum 
coherence times longer than 10 min.157 Interactions between ions map to interactions between effective quantum spin states and 
quantum-harmonic-oscillator bath states – each of which can be precisely controlled and programmed using laser light.158 Site-
resolved detection of each ion’s spin state can be achieved with near-unit fidelity.159 These features have made trapped ions the 
leading platform for establishing atomic frequency standards160 and one of the leading candidates for performing quantum 
simulations and quantum computations on such interacting spin systems. 28,161–166 

For ion-trap quantum hardware, the generalized Ising Hamiltonian is represented by a spin-lattice of qubits, where (1) the 
energy gap between the states at each qubit, i, and their relative orientations, are controlled by local effective magnetic fields,
Bx
i ; B

y
i ; B

z 
i

 
, and (2) the spin-spin coupling between different lattice sites, i and j, is controlled using laser pulses, also spatially 
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non-isotropic, and represented as Jx ij; J
y 
ij; J

z 
ij

n o 
. Thus, the most general Hamiltonian achievable within the ion trap quantum 

hardware at low temperatures is 

HIT ¼ 
XN1 

i ¼ 1 

XN 

j4i 

Jx ij s x i s x j þ Jy ij s
y 
i s y j þ Jz ij s

z 
i s z j 

n o 

þ 
XN 

i ¼ 1 

Bx 
i s x i þ By 

i s y i þ Bz 
i s z i 

  
ð12Þ 

where N is the number of qubits (or ion-sites). The quantities sx i , s
y
i , and sz i are the Pauli spin operators along the respective 

directions of the Bloch sphere on the i-th lattice site. It is critical to note that the expression above is more general than that 
commonly used in condensed matter physics and quantum chemistry, where only nearest neighbor interactions are considered. In 
fact, the set of programmable Ising-type Hamiltonians on an ion trap quantum computer depicts a complete graph that connects 
all qubits in a spin-lattice system with programmable interactions.167 

In Ref. 72, we map the Born-Oppenheimer nuclear Hamiltonian to Eq. (12), thus allowing the two quantum systems to 
undergo analogous quantum dynamics. Towards this, the parameters fBg

i ; J
g 
ijg are “programmed” as per the elements of the 

classically determined Born-Oppenheimer nuclear Hamiltonian matrix. To arrive at such a map, we first examine the intrinsic 
symmetries that are present within such generalized Ising Hamiltonians. 
3.2 Block Structure of Ising-Type Hamiltonian Matrices Obtained From Appropriate Classification of the Computational Basis 

The ion-trap Hamiltonian, HIT , is naturally represented in a basis of 2N spin states, where for example, fj↑↑⟩; j↑↓⟩; j↓↑⟩; j↓↓⟩g form 
a basis for a 2-qubit system. These now provide us with a “computational basis” with programmable handles, fBg

i ; J
g 
ijg. We  find that 
Fig. 9 The upper triangular part (excluding the diagonal) of the Ising Hamiltonian, HIT (Eq. (12)), in the permuted computational basis is 
illustrated for a three qubit system. Spin (computational) basis state kets, along with their corresponding binary and integer representations, are 
presented at the base of the figure. These states are partitioned into odd, and even spans of the total spin raising operators. The interaction 
between any two states, ji〉 and jj 〉 is the ij th matrix element of the ion trap Hamiltonian. For example, ⟨↑↓↑jHIT j↓↓↓⟩  Jx 

13  Jy 
13

  
. The off-

diagonal block that couples the vectors obtained from the odd, and even spans of the total spin raising operators are marked using a gray square. 
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a general set of permutations on the computational basis vectors to reveal a novel block structure of the Ising Hamiltonian matrix. 
Specifically, the 2N spin states are partitioned into two sets that are created by the span of even and odd total spin raising operators. 
See the set of vectors in the bottom left row of Fig. 9, where this idea is illustrated for a three-qubit system. For the notation in this 
paper, we have used the binary representation, j11⋯〉 for spin state, j↓↓⋯〉 and the corresponding integer representation j2N  1⟩〉 
obtained from the bit-sequence encoded in j11⋯〉. 

When the spin basis vectors are partitioned in this fashion, the Ising Hamiltonian in Eq. (12) separates into the block structure 
that is illustrated in Fig. 9 for a three-qubit system. Specifically, the matrix that determines the time-evolution of the hardware 
system separates into two diagonal blocks that can only be coupled by turning on Bx

i ; B
y 
i 

  
and this is shown in Fig. 9 as part of the 

gray square. Thus eliminating these Bx 
i ; B

y 
i

  
fields would yield two separate diagonal blocks allowing the treatment of systems that 

may have a similar block structure. Similarly, the off-diagonal matrix elements within each diagonal block are determined by the 
laser field parameters, Jx ij; J

y 
ij

n o 
. While the structure derived here is completely general, it is illustrated in Fig. 9 for a 3-qubit system. 

The diagonal elements of the matrix, not shown in Fig. 9 to maintain clarity, contain linear combinations of fBz
i ; J

z 
ijg. 

For larger number of qubits, the block structure has a recursive form. This block-form of the Ising-type Hamiltonian and the 
associated structure in Fig. 9, is a significant general result72 . To the best of our knowledge such a structure of the general Ising 
model has never been discussed in the literature, and as we find below, this analysis is critical towards mapping arbitrary 
problems. 
3.3 The Grid Based Quantum Nuclear Hamiltonian Computed on Classical Hardware 

In the coordinate representation with basis elements, fjx〉g, the quantum nuclear Hamiltonian matrix elements are given by, 

〈xjH Mol jx0 〉¼ Kðx; x0 Þ þ VðxÞδ x x 
0 

  
ð13Þ 

For local potentials, the potential energy operator, ^ V, is diagonal in the coordinate representation. The expression in Eq. (13) 
yields a continuous representation, and in practice the matrix and the corresponding vectors that the matrix acts on are represented 
on a discretized Cartesian grid. The potential energy in the above equation is obtained from electronic structure calculations, that 
may be performed on quantum hardware, perhaps using the algorithm used above. 

We employ an analytic banded Toeplitz distributed approximating functional (DAF)168,169 representation for the grid repre-
sentation of the kinetic energy operator in Eq. (13): 

Kðx; x 0 Þ ¼  Kðjx  x 
0 jÞ ¼ 

ℏ2 

4ms3 
ffiffiffiffiffiffi 
2p 

p exp  
x x 

0 2

2s2 

( ) 

XMDAF =2 

n ¼ 0 

1 
4 

n 1 
n! 
H2nþ2 

x x 
0 ffiffiffi 

2
p 

s 
: 

ð14Þ 

The banded-Toeplitz representation of the DAF approximation for the kinetic energy operator, where the property of its matrix 
elements, Kij  Kðji  jjÞ, has a critical role in reducing the nuclear Hamiltonian to the form of HIT , depicted in Fig. 9. In  Eq. (14), 
H2nþ2 

xx
0 ffiffi

2
p

s

 
are the even order Hermite polynomials that only depend on the spread separating the grid basis vectors, |x〉 and |x

0 
〉, 

and MDAF and s are parameters that together determine the accuracy and efficiency of the resultant approximate kinetic energy 
operator. 
3.4 Unitary Transformations That Yield the Block Structure of the Nuclear Hamiltonian, for Symmetric Potentials, to Make 
These Commensurate With and Mappable to the Spin-Lattice Hamiltonian, HIT 

The nuclear Hamiltonian, HMol from Eq. (13), has a banded Toeplitz structure due to the kinetic energy being expressed in terms of 
DAFs. In general, the Hamiltonian in Eq. (13) represents a multi-dimensional quantum dynamics problem, where the number of 
dimensions directly corresponds to the number of nuclear degrees of freedom. Here, we examine the map between the Hamil-
tonian in Eq. (13) for symmetric one-dimensional potentials and the Ising model Hamiltonian discussed in Section 3.2. Routes 
from here to unsymmetric potentials and to problems in higher dimensions are discussed in a series of publications being 
prepared from our group that utilize tensor networks. 

The unitary transform that leads to the block structure of the nuclear Hamiltonian, similar to the structure of the Ising 
Hamiltonian, can be expressed as a product of Givens rotations. The effect of the Givens rotations on the grid basis states is to 
create superposition states of the symmetric grid basis states. To explain this, we introduce a uniform one-dimensional set of 2N 

grid points, jxi〉f g, such that the Givens transformed grid basis, j~xi〉f g, may be represented as 

j~xi⟩  
1 ffiffiffi 
2 

p jxi⟩ þ jxni⟩½ ; 0rio n þ 1ð Þ=2 ð15Þ 

j~xi⟩  
1 ffiffiffi 
2 

p jx⟩i  jxni⟩½ ; n þ 1ð Þ=2rirn ð16Þ 

where n ¼ 2N  1. The grid basis and the Givens transformed grid basis, for a three-qubit system, are represented on the left 



Fig. 10 An illustration of the mapping of the Givens transformed grid basis state representation, j~ x 〉 (Eq. (16)), for the discrete quantum nuclear
Hamiltonian to the permuted computational basis state representation, j ~l〉 (Section 3.2), for the Ising model Hamiltonian. The respective basis
states map shown here for the case of 3 qubits holds true and can be generalized to an arbitrary number of qubits. The dashed line in the middle 
separates the two blocks of each Hamiltonian. 

Fig. 11 An illustration of the block-diagonalization of the nuclear Hamiltonian, as captured by Eq. (17). The original Hamiltonian, HMol is on the 
left, whereas the transformed ~H 

Mol 
il is shown on the right. On the right side, specific matrix elements from each block of ~H 

Mol 
il are highlighted to 

illustrate Eqs. (18) and (19). These highlighted elements of ~H 
Mol 
il are obtained by combining elements of HMol , as per Eq. (17), and these are 

marked using red and blue squares in zoomed in representations matrix elements in HMol . The blue (negative) and red (positive) indicate the 
phase of the corresponding elements of HMol , as obtained from ai in Eqs. (17), (18) and (19). 
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columns of Fig. 10. Eqs. 15 and 16 form two mutually orthogonal subspaces and are represented in the top and bottom portions 
of Fig. 10, separated by the dashed line. These subspaces block diagonalize the nuclear Hamiltonian for symmetric potentials. This 
process is illustrated for a three-qubit system (23-grid points) in Fig. 11. 

The ilth matrix element of the resultant molecular Hamiltonian in the Givens transformed grid basis is explicitly written as 
~H 
Mol 
il ¼ 

1 
2 

H Mol 
i;l þ alH Mol 

i;nl þ aiH Mol 
ni;l þ ðaialH Mol 

ni;nl 

  
; ð17Þ 
where ai ¼ sgn i  ðn=2Þ½ . The elements of the diagonal blocks of ~H 
Mol 

(matrix on the right in Fig. (11)) are obtained from 
Eq. (17) as 
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~H 
Mol 
il ¼ 

1 
2 

H Mol 
i;l þ aiH Mol 

i;nl þ aiH Mol 
ni;l þH  Mol 

ni;nl 

  

¼ Kðxi; xlÞ þ aiKðxi; xnlÞ½  þ ¼ 
1 
2 
VðxiÞ þ VðxnlÞ½ δi;l 

ð18Þ 

The elements of the unitary transform, ai are, in fact, the characters of the Cs point group. The right hand side of the above 
equation, therefore, represents a symmetry adapted transformation of the nuclear Hamiltonian, and the term 1 

2 VðxiÞ þ VðxniÞ½ , 
symmetrizes the potential energy surface in one-dimension. By extension, for the elements of the off-diagonal blocks of ~ H 

Mol 
in 

Fig. 11, al ¼  ai and 

~H 
Mol 
il ¼ 

1 
2 

H Mol 
i;l  aiH Mol 

i;nl þ aiH Mol 
ni;l H  Mol 

ni;nl 

  

¼ 
1 
2 
VðxiÞ  VðxnlÞ½ δi;nl 

ð19Þ 

where the kinetic energy contribution is identically zero purely due to the Toeplitz nature of Eq. (14), and only the anti-symmetric 
portion of the potential, 1 

2 VðxiÞ  VðxnlÞ½ , contributes to the anti-diagonal part of ~H 
Mol 

. Thus for symmetric potentials such as 
those considered here, Eq. (19) is identically zero. This observation will become useful when we generalize the approach presented 
here, first to general potentials and then, to problems of higher dimensionality in future publications. 
3.5 Mapping Protocol for Quantum Chemical Dynamics 

The structure of the ion-trap Hamiltonian constrains the class of mappable problems. These constraints dictate the accuracy with 
which quantum chemical dynamics simulations can be performed on an ion-trap system given by Eq. (12). To summarize our 
discussion thus far (See Fig. 10), we began with a computational basis |l〉, used to describe the Ising Hamiltonian, HIT in Eq. (12), 
and the grid basis jx〉, used to represent the quantum nuclear Hamiltonian, HMol in Eq. (13). In the interest of matching the 
structures of the two Hamiltonians, we first obtained a permuted computational basis: jl⟩-j ~l ⟩ (Section 3.2, and also summarized
on the right side of Fig. 10) and a unitary (Givens) transformed quantum nuclear basis: jx〉-j~x〉 (Section 3.4). In doing so our goal 
becomes: 

〈~xjH Mol j~x 0 〉2〈~ljH ITj~l 
0 
i ð20Þ 

where we first introduce a map between the transformed quantum nuclear wavefunction bases and the permuted computational 
bases that represent the Ising spin lattice system as: 

j~xi3 j~li: ð21Þ 
This map is illustrated within the central box in Fig. 10 where the left side of the central box represents the Givens transformed 

grid basis, and the right side represents the permuted computational basis. Furthermore, the mapped basis states are separated into 
blocks by a dashed horizontal line. For the molecular Hamiltonian, the coupling across these blocks is identically zero for 
symmetric potentials, while for the Ising Hamiltonian, the coupling across these blocks is identically zero when the terms, Bx

i ; B
y
i , 

are eliminated from Eq. (12) (See Fig. 9). The effectiveness of the maps in Eqs. (20) and (21) will essentially dictate the accuracy to 
which the dynamics captured within the ion-trap quantum simulator controlled by an Ising Hamiltonian accurately predicts the 
quantum nuclear dynamics. 

In this section, we will show that, due to the structure of the Hamiltonians discussed in the previous sections, the diagonal and 
off-diagonal elements of each individual diagonal block of mappable Hamiltonians, such as Eq. (13), are Hadamard transformed 
to provide Bz

i ; J
z 
ij

n o 
and Jxij; J

y 
ij

n o
, respectively. As a consequence of the discussion in Section 3.4, both Hamiltonians, Eqs. (12) and 

(13), by construction, take the form depicted in Fig. 5c and the right side of Fig. 8, respectively. We exploit this feature to evaluate a 
separate set of Bz

i ; J
g 
ij

n o
values, below, for each of the two diagonal blocks of the molecular Hamiltonian, while maintaining 

Bx
i ; B

y 
i

  
to be identically zero. 

3.6 Obtaining Ion-trap Parameters Bz 
i ; J

z 
ij

n o 
From the Diagonal Elements of the Molecular Hamiltonian 

The diagonal elements of the molecular Hamiltonian are directly mapped to those of the spin lattice Hamiltonian after invoking 
the map of the unitary transformed grid basis (j~ xi) to the permuted computational basis (j~li ). Each diagonal element of the 
molecular Hamiltonian in the transformed grid representation, ~ xjHMolj~x  

, is equivalent to the corresponding element of the ion-
trap Hamiltonian, ljHIT jl 

 
in the permuted computational basis representation. In doing so, the set of on-site and inter-site 

coupling parameters, Bz 
i ; J

z 
ij

n o
, of the ion-trap that occur along the diagonal of HIT can be evaluated. The mapping expression 

between the diagonal elements of the molecular Hamiltonian and the corresponding elements of the ion-trap Hamiltonian may 
be written as 

xjH Mol jx   ~ljH IT j~l 
D E 

ð22Þ 
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Using Eq. (18) and Eq. (12), for the left and right sides of Eq. (22), we obtain 

Kðxi; xiÞ  Kðxi; xniÞ½  þ 
1 
2 
VðxiÞ þ VðxniÞ½  

¼ 
XN 

j ¼ 1 

ð1Þ ~l j Bz 
j þ 

XN1 

j ¼ 1 

XN 

k4j 

ð1Þ ~l j "~lk Jz jk 

for irn=2 

ð23Þ 

Kðxi; xiÞ þ Kðxi; xniÞ½  þ 
1 
2 
VðxiÞ þ VðxniÞ½  

¼ 
XN 

j ¼ 1 

ð1Þ ~l j Bz 
j þ 

XN1 

j ¼ 1 

XN 

k4j 

ð1Þ ~l j "~lk Jz jk 

for i4n=2 

ð24Þ 

where " on the right side denotes the addition modulo 2, ~l j is the j th bit of the bit representation of ~ l with values 0 or 1 for up- or 
down-spin, respectively, as shown in Fig. 9. 

Thus, the diagonal elements of ~H 
Mol 

to obtain ion-trap parameters Bz
i ; J

z 
ij

n o 
. The expressions needed for this purpose are derived 

from Eqs. (23) and (24), Bz 
i ; J

z 
ij

n o 
are specific72 Hadamard transforms of 〈~x jHMolj~x〉, that is, 

〈~xjH Mol j~x〉 -
Hadamard 

Bz 
i ; J

z 
ij 

n o 
ð25Þ 

While this map is general for arbitrary number of qubits, the linear transformations between 〈~xjHMolj~xi and Bz
i ; J

z 
ij

n o 
, are rank-

deficient and error estimates are presented in Ref. 72 that apply for arbitrary number of qubits. 
4 Reduction of Circuit Depth in Quantum Electronic Structure 

In order to gauge the accuracy and reduction in computational complexity arising from our Graph-|Q〉〈C| method presented above, 
we have applied this approach to a range of hydrogen molecular cluster problems. These systems are critical for applications 
related to energy storage.170–175 In particular, the safe and efficient storage173,175–178 of molecular hydrogen is of paramount 
importance to potential developments in new fuel cell technologies.179–181 Furthermore, the study of ortho- and para-
hydrogen182–187 at low-temperatures has been a fundamental challenge that has implications towards the study of exotic new 
states of matter that may have important applications in low-temperature physics.188–190 

While the key properties of such systems involve the detailed study of electronic as well as nuclear degrees of freedom,191 with 
quantum algorithms for such applications discussed in Section 3, here we discuss the accuracy of Graph-|Q〉〈C| and its ability to 
reduce the complexity of quantum circuits in obtaining UCCSD level electronic energies for such systems. 

Hydrogen molecular clusters of various sizes H2ð Þn , (n  ¼ 2, ⋯, 128) (Fig. 12) have been treated with the Graph-|Q〉〈C| method 
to demonstrate scalability and accuracy as the system size grows. Specifically, the analysis of errors due to the truncation in rank (R 
in Eq. (7)) and edge length cutoff used in the graph definition, allows us to gauge the fragment circuit complexity needed to 
achieve an acceptable (milli-Hartree) level of accuracy. 

The complexity of our algorithm is determined by the maximum value of R within the family of quantum circuits: 
fUa;r jr ¼ 0⋯Rg. Furthermore, these graph-based circuit complexities are also dictated by the maximum edge length that is used to 
create the graphs. In Ref. 83 a detailed analysis of the accuracy of Graph-|Q〉〈C| is conducted when both the maximum edge length 
as well as R are varied and chosen to have values up to their respective maximum possible values. Here we summarize the milli-
Hartree level agreement between full UCCSD calculations and those obtained from Graph-|Q〉〈C|. 
Fig. 12 Figure visually shows the drastically increasing number of fragments with increasing R. Figure  (a):  H2½ 128. Figure (b): Graphical decomposition 
of H2½ 128, where each H2 molecule is treated as a node, and edges connect all nodes within a 4.0 Å distance. Clearly as R increases, including edges, 
faces and higher order simplexes leads to a catastrophic growth in the number of fragments. Figure (c) combines the atomic and graph images. 



Fig. 13 Results for larger H2-clusters. Figure (a) and (b): 4.0 Å and R¼ 1. 

Fig. 14 Results for larger H2-clusters. Figure (a): 4.0 Å and R¼ 2. Figure (b): 7.5 Å and R¼ 3. Figure (c): 4.0 Å and R¼ 2; 3. Figure (d): 7.5 Å 

and R¼ 2; 3. These figures show the progressive improvement in accuracy (Figures (c) and (d)) and the associated increase in costs (see relative 
vertical position of yellow dots on Figures (a) and (b)). 
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The set of results for larger H2-clusters are presented in Figs. 13 and 14. While Fig. 13(a) summarizes the results for H2½ n 

clusters, with n ¼ 1;⋯8, Fig. 13(b) extends this out to H2½ 64. As the size of the molecular system grows, the corresponding circuit 
complexity, as represented by the number of CNOT gates (red dots), increases exponentially. However, the complexity of Graph-
|Q〉〈C|, as represented by the yellow dots in Fig. 13, grows in a gradual fashion while maintaining accuracy in the milli-Hartree 
range as can be seen from the right vertical axis of Fig. 13. Clearly these figures also show that while R¼  1 appears sufficient and 
does provide accurate results, the error grows with system size. Thus in Figs. 10(a) and (b) we present the accuracy, and CNOT-gate 
count for R¼ 2 and R¼ 3. Clearly increasing the value of R reduces the error but also increases the number of CNOT gates as 
seen in Figs. 14(c) and (d). 



Table 1 Quantum circuit resource requirements when standard techniques are used: illustration for a family of H2-clusters. Clearly as system 
size grows the circuit gets extremely complex. The Graph-|Q〉〈C| approach reduces resource complexity by several orders of magnitude 

System Circuit depth Number of Number of Total number of Number of 
qubits CNOT gates gates parameters 

H2 11 2 3 16 3 
H2 ð Þ2 924 6 615 1217 26 
H2 ð Þ3 5920 10 4684 7370 117 
H2 ð Þ4 21,361 14 16,285 27,021 360 
H2 ð Þ5 

57,402 18 47,312 70,204 875 
H2 ð Þ6 128,469 22 107,190 156,081 1818 
H2 ð Þ7 253,846 26 205,192 313,143 3381 
H2 ð Þ8 458,233 30 389,472 550,279 5792 

Fig. 15 The molecular geometry for DMANHþ with the shared proton potential surface shown in red. The quantum mechanical nature of the 
shared proton allows it to be simultaneously present in both wells, and here we use Eq. (12) to simulate the behavior of this shared proton 
through our mapping protocol in Eq. (20). 

Fig. 16 Dynamics of the molecular and the ion trap systems: The integer (i ) depicts the projection of a propagated state onto the i th permuted 
spin basis state, j ~l i 〉, and the corresponding Givens transformed grid basis state, j~x i 〉, for the ion-trap (dashed) and the molecular system with 
dDA ¼ 2:53Å (solid), respectively. Note that all propagation is conducted on classical platforms. The agreement of the quantum dynamics in both 
systems is exact to within numerical round-off (1015). The two rows in the figure legend represent the two sets spanned by odd and even spin 
raising operators, S þf g acting on the j↓↓⋯〉 spin state (dashed) and their corresponding Givens transformed grid basis states (solid) according to 
Eq. (21). An extended set of dDA are considered in reference Saha, D., Iyengar, S.S., Richerme, P., Smith, J.M., Sabry, A., 2021. Mapping quantum 
chemical dynamics problems to spin-lattice simulators. J. Chem. Theory Comput. 17, 6713-6732, and results for a longer-term dynamics for the 
most stable structure (dDA ¼ 2:53Å) is provided in Fig. 17. 
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A more complete picture of circuit complexity can be seen from Table 1, where we present the circuit depth, the number of 
qubits, the number of CNOT gates, total number of gates, and number of parameters needed to describe a quantum circuit, using 
the standard implementation available in Qiskit, for clusters of various sizes. Thus, as per Fig. 13, when R¼ 1 is used for these 
calculations the resources needed are as dictated by the second and third rows in Table 1. This provides a significant reduction in 
the resources needed to perform these computations, and as noted in the figures above. 

Thus in general, choice of maximum R and edge length cut-off would be based on a compromise between the desired accuracy 
and efficiency. However, in all cases, it appears that Graph-|Q〉〈C| presents a powerful mode to adaptively tailor the quantum 
circuit depth problem. 
5 Performance of the Mapping Protocol for Quantum Nuclear Dynamics: Case Study of a Symmetric Hydrogen 
Bonded System 

We examine the map in Section 3 by simulating the quantum dynamics of the molecular system and the ion-trap dynamics, on classical 
hardware, independently. Analogous experimental studies on ion-trap quantum systems have been conducted192 and are in review; these 
are in excellent agreement with the theoretical results discussed here. In doing so we study the time-evolution of the initial wavepacket 
Fig. 17 The dynamics of the molecular system (solid) and the ion-trap system (dashed) that show their exact match to within numerical round-
off (1015) over long simulation times sufficient to capture the molecular vibrational properties. The projection of the respective time-dependent 
wavepackets onto basis vectors within each of the two decoupled blocks are shown separately for clarity. 



Quantum Algorithms for the Study of Electronic Structure and Molecular Dynamics: Novel Computational Protocols 19 
states prepared in the respective permuted basis representations for the molecular and Ising model Hamiltonians. As stated, the parameters 
in the Ising Hamiltonian are determined, and thus controlled, by the pre-computed matrix elements of the molecular Hamiltonian. The 
specific intra-molecular proton transfer problem considered here is that in the protonated 1,8-bis(dimethylamino) naphthalene 
(DMANH þ ) system shown  in  Fig. 15(a).  The DMAN molecule has  an  extremely  large proton affinity of 242 kcal/mol,193 with 
DMANH þpKa value in the range 12.1–12.3.194As a result, the system is one of the most frequently investigated proton sponges. The 
NHN þ hydrogen bond in proton sponges is attractive from the point of view of both the nature of the short potentially symmetric 
hydrogen-bond bridges,195–198 their infrared spectroscopic behavior and their propensity to occur in common nitrogen activation cata-
lysts.199,200 Thus, the DMANH þ system has been frequently studied as a model for short, low-barrier hydrogen bonds that have a role in 
certain enzyme-catalyzed reactions. In solution, the shared proton delocalization in DMANH þ is controlled by a low-barrier symmetric 
double-well potential, with barrier height being influenced by solvent and temperature.201,202 

In the following subsections, we classically pre-compute the nuclear Hamiltonian for the system in Fig. 15, and simulate the quantum 
nuclear dynamics on these potentials using the Ising model based ion-trap simulators. We treat the shared proton stretch dimension within 
the Born-Oppenheimer limit. The nuclear Hamiltonian is determined by the ground electronic state potential energy surface. 
6 Quantum Simulation of Proton-Transfer Dynamics 

Given the block structure of both molecular and Ising Hamiltonians in the permuted and Givens transformed basis representa-
tions, the initial wavepacket for the ion-trap system is chosen as a coherent linear combination of the spin basis states: 
j↑↑↑⟩ þ j↓↓↓⟩ ffiffiffi

2 
p  

on a three qubit system. Given the block structure of the Ising Hamiltonian with Bx
i ; B

y 
i

  
turned off, the 

components of this initial state, j↑↑↑〉 and j↓↓↓〉, are not coupled. Additionally, these states will not couple such as might be the 

case in the presence of Bx 
3  iBy 

3 in the off-diagonal blocks: for example, pathways such as j↓↓↓〉 ⟶ 
Bx 
3iBy 

3j↑↓↓〉 ⟶ 
Jx12Jy 12j↑↑↑〉 will remain 

unpopulated. Hence, in essence, j↑↑↑〉 gets propagated as per the unitary evolution corresponding to the top diagonal block of the 
Ising Hamiltonian and j ↓↓↓ 〉 as per the bottom-block. This critical feature allows us to treat the two separated blocks as arising 
from two different ion-traps with two different sets of B g i ; J

g 
ij 

n o 
parameters. Given the direct map in Eq. (21) between the permuted

computational basis and the Givens transformed molecular grid basis, the initial wavepacket for the molecular system is to be 
chosen in an analogous fashion to the initial wavepacket of the ion-trap, which is j~x0〉þj~x7 〉 ffiffi 

2
p

n o 
. This essentially leads to the initial 

wavepacket for the quantum nuclear dynamics problem as being chosen on one end of the grid, that is, a state localized closer to 
one of the nitrogen atoms in Figs. 5(a) and 10(a). This choice results in the initial nuclear wavepacket being symmetrically located 
at either end of the Givens transformed basis (Eq. (16)). The spin-lattice and molecular wavepackets are then independently 
propagated for each potential obtained for different donor-acceptor separations, and compared to gauge accuracy of the quantum 
simulation. 

Given the recursive form of the matrix representation of the Ising Hamiltonian in Eq. (12), as discussed in Ref. 72, the ion-trap 
hardware initial wavepacket state is directly propagated by the choice of B gi ; J

g 
ij 

n o 
for arbitrary time-segments. While here, we 

emulate the time-evolution of the ion-trap system according to the Hamiltonian in Eq. (12) on classical hardware, by using the 
eigenstates of the Ising Hamiltonian in a publication under review192 we have experimentally demonstrated the results here by 
performing quantum computations on an ion-trap system. The time-dependent probabilities resulting from the projection of the 
resultant time-dependent wavepacket on the computational basis, at each interval of time, is shown using dashed lines in Figs. 16 
and 17 for a donor-acceptor distance value of 2:53Å (The donor-acceptor distance value of 2:53Å corresponds to the most 
stable structure, but there are several other geometries that are also populated (at 300 K) even from a purely classical Boltzmann 
estimation). Hence these other geometries have also been discussed in detail in Ref. 72 Similarly, we determine the time-evolution 
of the initial wavepacket for the molecular system by using the eigenstates of the transformed Hamiltonian in Eq. (17), and the 
resulting probabilities from the projection of the time-dependent wavepacket on the Givens transformed grid basis, j~x〉 f g  are 
shown using solid lines in Figs. 16, and 17. The probabilities match exactly, apart from numerical round-off error (1015), for the 
quantum simulation of the dynamics of the two systems. Clearly, this is also true for much longer time intervals as can be seen in 
Fig. 17. Given the exact match between the spin-lattice dynamics and the quantum chemical dynamics, the features present in ion-
trap dynamics must also exist in the chemical dynamics problem. Thus through the isomorphism constructed above, our algo-
rithm allows the ability to probe any entanglement that may be present in chemical systems. 
7 Conclusions 

The promise of solving exponentially complex problems efficiently using quantum computing hardware and associated quantum 
computing algorithms is a rapidly evolving research frontier.25 While we are in the early stages of this quantum revolution, there 
are a wide set of scientific and technological areas that can benefit from such developments. However, true progress in such areas 
can only be achieved by a rigorous study and understanding of the electronic structure and dynamics of complex materials, thus 
requiring accurate treatment of electron correlation effects in conjunction with a rigorous treatment of quantum nuclear 
effects.9,18,148,149,200,203,204 
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Here, we discuss novel (a) procedures to reduce the depth of quantum circuits and reduce the extent to which this influences 
the quality of results in computing post-Hartree Fock electronic structure energies, and (b) general, but approximate mapping 
procedures between a quantum chemical dynamics problem, constructed on a single Born-Oppenheimer surface, and an ion-trap 
quantum simulator where the dynamics is dictated by a generalized form of the Ising model Hamiltonian. 

The circuit depth reduction method is based on molecular fragmentation and specifically a molecular system is divided into 
overlapping fragments through a graph theoretic technique. This then allows the construction of a series of projection operators, 
that allow some overall model for quantum computing obtained from an approximation to the unitary evolution of the full 
system, into separate processes, some of which can be treated on quantum hardware and others on classical hardware. Thus, we 
discuss a procedure for electronic structure that can be spawned on to a potentially large ensemble of classical and quantum 
hardware systems. We also show that such a circuit decomposition approach yields up to nine orders of magnitude reduction in the 
number of CNOT gates and circuit depth for the larger sized clusters when compared to a standard quantum circuit imple-
mentation as available within Qiskit with limited loss in accuracy. 

The key step involved in facilitating our map for the quantum nuclear dynamics problem is the partitioning of the coupled 
qubit space into two zones using only odd or even powers of the total spin raising operators that are used to generate such a 
coupled qubit space. Once the coupled qubit basis set is partitioned in such a way, the Ising model Hamiltonian reduces into a 
block form thus allowing the possibility to map all problems that may be written in a similar block form. We consider a symmetric 
proton-transfer problem and show how such a problem can be mapped to an ion-trap system, and also show that the dynamics of 
the two systems is identical provided the parameters of the ion trap are chosen in concert with that of the molecular system 
obtained from classical pre-computation. 

General quantum nuclear dynamics problems, however, have unsymmetric potential energy surfaces and are generally per-
formed in higher dimensions. Thus critical extensions to these methodologies using tensor networks are currently underway. 
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